Copyright © 2021 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.
This specification defines a core subset of Mathematical Markup Language, or MathML, that is suitable for browser implementation. MathML is a markup language for describing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality for text.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/.
This document was published by the Math Working Group as a First Public Working Draft. This document is intended to become a W3C Recommendation.
GitHub Issues are preferred for discussion of this specification. Alternatively, you can send comments to our mailing list. Please send them to www-math@w3.org (subscribe, archives).
Publication as a First Public Working Draft does not imply endorsement by the W3C Membership.
This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
This document is governed by the 15 September 2020 W3C Process Document.
This section is non-normative.
The [MATHML3] specification has several shortcomings that make it hard to implement consistently across web rendering engines or to extend with user-defined constructions e.g.
This MathML Core specification intends to address these issues by being as accurate as possible on the visual rendering of mathematical formulas using additional rules from the TeXBook’s Appendix G [TEXBOOK] and from the Open Font Format [OPEN-FONT-FORMAT], [OPEN-TYPE-MATH-ILLUMINATED]. It also relies on modern browser implementations and web technologies [HTML] clarifying interactions with them when needed or introducing new low-level primitives to improve the web platform layering.
Parts of MathML3 that do not fit well in this framework or are less fundamental have been omitted. Instead, they are described in a separate and larger [MATHML4] specification. The details of which math feature will be included in future versions of MathML Core or implemented as polyfills is still open. This question and other potential improvements are tracked on GitHub.
By increasing the level of implementation details, focusing on a workable subset, following a browser-driven design and relying on automated web platform tests, this specification is expected to greatly improve MathML interoperability. Moreover, effort on MathML layering will enable users to implement the rest of the MathML 4 specification, or more generally to extend MathML Core, using modern web technologies such as shadow DOM, custom elements, CSS layout API or other Houdini APIs.
The term MathML element refers to any element in the MathML namespace. The MathML element defined in this specification are called the MathML Core elements and are listed below. Any MathML element that is not listed below is called an Unknown MathML element.
<annotation>
<annotation-xml>
<maction>
<math>
<merror>
<mfrac>
<mi>
<mmultiscripts>
<mn>
<mo>
<mover>
<mpadded>
<mphantom>
<mprescripts>
<mroot>
<mrow>
<ms>
<mspace>
<msqrt>
<mstyle>
<msub>
<msubsup>
<msup>
<mtable>
<mtd>
<mtext>
<mtr>
<munder>
<munderover>
<none>
<semantics>
The grouping elements are
<maction>
,
<math>
,
<merror>
<mphantom>
,
<mprescripts>
,
<mrow>
,
<mstyle>
,
<none>
,
<semantics>
and unknown MathML elements.
The scripted elements are
<mmultiscripts>
,
<mover>
,
<msub>
,
<msubsup>
,
<msup>
,
<munder>
and
<munderover>
.
The radical elements are
<mroot>
and <msqrt>
.
The attributes defined in this specification have no namespace and are called MathML attributes:
maction
attributesmo
attributesmpadded
attributesmspace
attributesmunderover
attributesmtd
attributesencoding
display
linethickness
<math>
ElementMathML specifies a single top-level or root
<math>
element, which encapsulates each
instance of MathML markup within a document. All other MathML content
must be contained in a <math>
element.
The <math>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the
following attribute:
The
display
attribute, if present,
must be an
ASCII case-insensitive
match
to block
or inline
.
The user agent stylesheet
described in § A. User Agent Stylesheet
contains rules for this attribute that affect the
default values for the
(display
block math
or inline math
)
and
(math-style
normal
or compact
) properties.
If the display
attribute is absent or has an invalid value, the User Agent
stylesheet treats it the same as inline
.
If the element does not have its computed
display
property equal to
block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise the layout algorithm of the
element is used to produce a
box. That MathML box is used as the content for the layout of
the element, as described by CSS for <mrow>
display: block
(if the computed value is block math
) or
display: inline
(if the computed value is inline math
).
Additionally, if the computed
display
property is equal to
block math
then that MathML box is rendered
horizontally centered within the content box.
$$...$$
and inline mode $...$
correspond to
display="block"
and display="inline"
respectively.
In the following example, a <math>
formula
is rendered in display mode on a new line and taking full width,
with the math content centered within the container:
<div style="width: 15em;">
This mathematical formula with a big summation and the number pi
<math display="block" style="border: 1px dotted black;">
<mrow>
<munderover>
<mo>∑</mo>
<mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow>
<mrow><mo>+</mo><mn>∞</mn></mrow>
</munderover>
<mfrac>
<mn>1</mn>
<msup><mi>n</mi><mn>2</mn></msup>
</mfrac>
</mrow>
<mo>=</mo>
<mfrac>
<msup><mi>π</mi><mn>2</mn></msup>
<mn>6</mn>
</mfrac>
</math>
is easy to prove.
</div>
As a comparison, the same formula would look as follows in
inline mode. The formula is embedded in the paragraph of text
without forced line breaking.
The baselines specified by the layout algorithm of the
are used for vertical
alignement. Note that
the middle of sum and equal symbols or fractions are all aligned,
but not with the alphabetical baseline of the surrounding
text.<mrow>
Because good mathematical rendering requires use of mathematical
fonts, the
user agent stylesheet
should set the
font-family
to the
math
value on the <math>
element instead of inheriting
it. Additionally, several CSS properties that can be set on
a parent container such as
font-style
, font-weight
,
direction
or text-indent
etc
are not expected to apply to the math formula and so the
user agent stylesheet
has rules to reset them by default.
math {
direction: ltr;
writing-mode: horizontal-tb;
text-indent: 0;
letter-spacing: normal;
line-height: normal;
word-spacing: normal;
font-family: math;
font-size: inherited;
font-style: normal;
font-weight: normal;
display: inline math;
math-style: compact;
math-shift: normal;
math-level: 0;
}
math[display="block" i] {
display: block math;
math-style: normal;
}
math[display="inline" i] {
display: inline math;
math-style: compact;
}
<integer-value>
value as defined in
[CSS-VALUES-3], whose first character is neither
U+002D HYPHEN-MINUS character (-) nor
U+002B PLUS SIGN (+).
<length-percentage>
value as defined in
[CSS-VALUES-3]
<color>
value as defined in [CSS-COLOR-3]
true
or
false
.
The following attributes are common to and may be specified on all MathML elements:
The
id
,
class
,
style
,
data-*
,
nonce
and
tabindex
attributes have the same syntax and semantic as defined for
id,
class,
style,
data-*,
nonce and
tabindex
attributes on HTML elements.
The
dir
attribute, if present,
must be an
ASCII case-insensitive match
to ltr
or rtl
.
In that case, the user agent is expected to treat the attribute as a
presentational hint setting the element's
direction
property to the corresponding value.
More precisely, an
ASCII case-insensitive match
to rtl
is mapped to rtl
while
an ASCII case-insensitive match to ltr
is mapped to ltr
.
dir
attribute is used to set the directionality of math
formulas, which is often rtl
in Arabic speaking world.
However, languages written from right to left often embed math
written from left to right and so the
user agent stylesheet resets
the
direction
property accordingly on the <math>
elements.
In the following example, the dir
attribute
is used to render "𞸎 plus 𞸑 raised to the power of
(٢ over, 𞸟 plus ١)" from right-to-left.
<math dir="rtl">
<mrow>
<mi>𞸎</mi>
<mo>+</mo>
<msup>
<mi>𞸑</mi>
<mfrac>
<mn>٢</mn>
<mrow>
<mi>𞸟</mi>
<mo>+</mo>
<mn>١</mn>
</mrow>
</mfrac>
</msup>
</mrow>
</math>
All MathML elements support event handler content attributes, as described in event handler content attributes in HTML.
All event handler content attributes noted by HTML as being supported by all HTMLElements are supported by all MathML elements as well, as defined in the MathMLElement IDL.
The
mathcolor
and
mathbackground
attributes, if present, must
have a value that is a color.
In that case, the user agent is expected to treat these attributes as a
presentational hint setting the element's
color
and
background-color
properties to the corresponding values.
The mathcolor
attribute describes the foreground fill
color of MathML text, bars etc
while the mathbackground
attribute describes the background color of an element.
The
mathsize
attribute, if present, must
have a value that is a valid length-percentage.
In that case, the user agent is expected to treat the attribute as a
presentational hint setting the element's
property to the corresponding value.
The font-size
mathsize
property indicates indicates the desired height
of glyphs in math formulas but also scale other parts (spacing, shifts,
line thickness of bars etc) accordingly.
mathvariant
attribute
The
mathvariant
attribute,
if present, must be an
ASCII case-insensitive
match to one of:
normal
,
bold
,
italic
,
bold-italic
,
double-struck
,
bold-fraktur
,
script
,
bold-script
,
fraktur
,
sans-serif
,
bold-sans-serif
,
sans-serif-italic
,
sans-serif-bold-italic
,
monospace
,
initial
,
tailed
,
looped
, or
stretched
.
In that case, the user agent is expected to treat the attribute as a
presentational hint setting the element's
property to the corresponding value.
More precisely, an
ASCII case-insensitive match
to text-transform
normal
is mapped to none
while any other valid value is mapped to its
ASCII lowercased value,
prefixed with math-
.
The mathvariant
attribute defines logical classes of token
elements. Each class provides a collection of typographically-related
symbolic tokens with specific meaning within a given mathematical
expression.
For mathvariant
values other than normal
,
this is done by using glyphs of
Unicode's Mathematical Alphanumeric Symbols.
In the following example, the mathvariant
attribute
is used to render different A letters. Note that by default
variables use mathematical italic.
<math>
<mi>A</mi>
<mi mathvariant="normal">A</mi>
<mi mathvariant="fraktur">A</mi>
<mi mathvariant="double-struck">A</mi>
</math>
mathvariant
values other than normal
are implemented for compatibility with full MathML and legacy editors that can't access characters in Plane 1 of Unicode. Authors are encouraged to use the corresponding Unicode characters.
The normal
value is still important to cancel automatic
italic of the <mi>
element.
salt
or
ssXY
properties from [OPEN-FONT-FORMAT]
to provide both styles. Page authors may use the
font-variant-alternates
property with corresponding OpenType font features
to access these glyphs.
displaystyle
and scriptlevel
attributes
The
displaystyle
attribute, if present, must have a value that is a boolean.
In that case, the user agent is expected to treat the attribute as a
presentational hint setting the element's
property to the corresponding value.
More precisely, an
ASCII case-insensitive match
to math-style
true
is mapped to normal
while
an ASCII case-insensitive match to false
is mapped to compact
.
This attribute indicates whether formulas should try to minimize
the logical height (value is false
) or not
(value is true
) e.g. by changing the size of content or
the layout of scripts.
The
scriptlevel
attribute, if present, must have value
+<U>
, -<U>
or <U>
where <U>
is an
unsigned-integer.
In that case
the user agent is expected to treat the scriptlevel
attribute as a
presentational hint setting the element's
property to the corresponding value.
More precisely,
math-depth
+<U>
, -<U>
and
<U>
are respectively mapped to
add(<U>)
add(<-U>)
and <U>
.
and displaystyle
values
are automatically adjusted within MathML elements.
To fully implement these attributes, additional CSS properties must be
specified in the user agent stylesheet
as described in § A. User Agent Stylesheet.
In particular, for all MathML elements a default
scriptlevel
font-size: math
is specified to ensure that
scriptlevel
changes are taken into account.
In this example, a <munder>
element is used to attach a
script "A" to a base "∑". By default, the summation
symbol is rendered with the font-size inherited from its
parent and the A as a scaled down subscript.
If displaystyle
is true, the summation symbol is drawn
bigger and the "A" becomes an underscript.
If scriptlevel
is reset to 0 on the "A", then it will
use the same font-size as the top-level math
root.
<math>
<munder>
<mo>∑</mo>
<mi>A</mi>
</munder>
<munder displaystyle="true">
<mo>∑</mo>
<mi>A</mi>
</munder>
<munder>
<mo>∑</mo>
<mi scriptlevel="0">A</mi>
</munder>
</math>
\displaystyle
, \textstyle
,
\scriptstyle
, and \scriptscriptstyle
correspond
to displaystyle
and scriptlevel
as
true
and 0
,
false
and 0
,
false
and 1
,
and false
and 2, respectively.
When parsing HTML documents user agents must treat any tag name corresponding to a MathML Core Element as belonging to the MathML namespace.
Users agents must allow mixing HTML, SVG and MathML elements as allowed by sections HTML integration point, MathML integration point, tree construction dispatcher, MathML and SVG from [HTML].
When evaluating the SVG
requiredExtensions
attribute, user agents must claim support for the language extension
identified by the
MathML namespace.
In this example, inline MathML and SVG elements are used inside
a HTML document. SVG elements <switch>
and
<foreignObject>
(with
proper <requiredExtensions>
) are used to
embed a MathML formula with a text fallback, inside a diagram.
HTML input
element is used within the
<mtext>
include an interactive input field inside a mathematical
formula.
<svg style="font-size: 20px" width="400px" height="220px" viewBox="0 0 200 110">
<g transform="translate(10,80)">
<path d="M 0 0 L 150 0 A 75 75 0 0 0 0 0
M 30 0 L 30 -60 M 30 -10 L 40 -10 L 40 0"
fill="none" stroke="black"></path>
<text transform="translate(10,20)">1</text>
<switch transform="translate(35,-40)">
<foreignObject width="200" height="50"
requiredExtensions="http://www.w3.org/1998/Math/MathML">
<math>
<msqrt>
<mn>2</mn>
<mi>r</mi>
<mo>−</mo>
<mn>1</mn>
</msqrt>
</math>
</foreignObject>
<text>\sqrt{2r - 1}</text>
</switch>
</g>
</svg>
<p>
Fill the blank:
<math>
<msqrt>
<mn>2</mn>
<mtext><input onchange="..." size="2" type="text"></mtext>
<mo>−</mo>
<mn>1</mn>
</msqrt>
<mo>=</mo>
<mn>3</mn>
</math>
</p>
<math>
element can be used at
position permitted for
flow content
(e.g. a
<foreignObject>
element)
or phrasing content.
<mi>
,
<mo>
,
<mn>
,
<ms>
and
<mtext>
elements.
<svg>
element can be used inside
<annotation-xml>
elements.
<annotation-xml>
elements with
encoding
application/xhtml+xml
or text/html
.
User agents must support various CSS features mentioned in this specification, including new ones described in § 4. CSS Extensions for Math Layout. They must follow the computation rule for display: contents.
In this example, the MathML formula inherits the CSS color of its
parent and uses the font-family
specified via the
style
attribute.
<div style="width: 15em; color: blue">
This mathematical formula with a big summation and the number pi
<math display="block" style="font-family: STIX Two">
<mrow>
<munderover>
<mo>∑</mo>
<mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow>
<mrow><mo>+</mo><mn>∞</mn></mrow>
</munderover>
<mfrac>
<mn>1</mn>
<msup><mi>n</mi><mn>2</mn></msup>
</mfrac>
</mrow>
<mo>=</mo>
<mfrac>
<msup><mi>π</mi><mn>2</mn></msup>
<mn>6</mn>
</mfrac>
</math>
is easy to prove.
</div>
All documents containing MathML Core elements must include CSS rules described in § A. User Agent Stylesheet as part of user-agent level style sheet defaults.
The following CSS features are not supported and must be ignored:
writing-mode
is treated as horizontal-tb
on all MathML
elements.white-space
is treated as nowrap
on all MathML elements.
width
,
height
,
inline-size
and
block-size
are treated as auto
on elements
with computed display value
block math
or
inline math
.
float
and clear
are treated as none
on all MathML elements.
align-content
, justify-content
,
align-self
, justify-self
have
no effect on MathML elements.
User agents supporting Web application APIs must ensure that they keep the visual rendering of MathML synchronized with the [DOM] tree.
All the nodes representing MathML elements in the DOM
must implement, and expose to scripts, the following
MathMLElement
interface.
WebIDL[Exposed=Window]
interface MathMLElement
: Element { };
MathMLElement
includes GlobalEventHandlers
;
MathMLElement
includes DocumentAndElementEventHandlers
;
MathMLElement
includes HTMLOrForeignElement
;
The
GlobalEventHandlers
,
DocumentAndElementEventHandlers
and
HTMLOrForeignElement
interfaces are defined in
[HTML].
Each IDL attribute of the
MathMLElement
interface
reflects the
corresponding MathML
content attribute.
In the following example, a MathML formula is used to render the fraction "α over 2". When clicking the red α, it is changed into a blue β.
<script>
function ModifyMath(mi) {
mi.style.color = 'blue';
mi.textContent = 'β';
}
</script>
<math>
<mrow>
<mfrac>
<mi style="color: red" onclick="ModifyMath(this)">α</mi>
<mn>2</mn>
</mfrac>
</mrow>
</math>
Because math fonts generally contain very tall glyphs such as big integrals, using typographic metrics is important to avoid excessive line spacing of text. As a consequence, user agents must take into account the USE_TYPO_METRICS flag from the OS/2 table [OPEN-FONT-FORMAT] when performing text layout.
MathML provides the ability for authors to allow for
interactivity in supporting interactive user agents
using the same concepts, approach and guidance to
Focus
as described in HTML, with modifications or
clarifications regarding application
for MathML as described in this section.
When an element is focused, all applicable CSS focus-related pseudo-classes as defined in Selectors Level 3 apply, as defined in that specification.
The contents of embedded
elements
(including HTML elements inside token elements),
contribute to the sequential focus order of the containing owner HTML
document (combined sequential focus order).
<math>
The default display
property
is described in § A. User Agent Stylesheet:
<math>
root,
it is equal to inline math
or block math
according to the value of the display
attribute.
<mtable>
,
<mtr>
,
<mtd>
it is respectively equal to
inline-table
,
table-row
and
table-cell
.
<maction>
and <semantics>
elements, it is equal to
none
.
block math
.
In order to specify math layout in different writing modes, this specification uses concepts from [CSS-WRITING-MODES-3]:
horizontal-lr
and ltr
.
See Figure 4,
Figure 5 and
Figure 6 for examples of other
writing modes that are sometimes used for math layout.
MathML boxes have several parameters in order to perform layout in a way that is compatible with CSS but also to take into account very accurate positions and spacing within math formulas. Each math box has the following parameters:
Block metrics. The block size, first baseline set and last baseline set. The following baselines are defined for MathML boxes:
Given a MathML box, the inline offset of a child box is the distance between the inline-start edge of the parent box and the inline-start edge of the child box. The block offset of a child box is the offset between block-start edge of the parent box and the block-start edge of the child box.
The line-left offset, line-right offset, line-over offset and line-under offset are defined similarly as offsets between the corresponding parent and child edges.
Here are examples of offsets obtained from line-relative metrics:
ltr
and
is the inline size of the box −
(line-left offset + inline size of
the child box) otherwise.
horizontal-lr
,
vertical-rl
or sideways-rl
and is the line-descent otherwise.
The layout algorithms described in this chapter for MathML boxes have the following structure:
During box layout, the following extra steps must be performed:
The box metrics and offsets of the
padding box
are obtained from the
content box
by taking into account the corresponding
padding
properties as described in CSS.
The baselines of the padding box are the same as the one of the content box.
If the content box has a top accent attachment then the padding box has the same property, increased by the inline-start padding. If the content box has an italic correction then the padding box has the same property, increased by the inline-end padding.
The box metrics and offsets of the
border box
are obtained from the
padding box
by taking into account the corresponding
border-width
property as described in CSS.
In general, the baselines of the border box are the same as the one of the padding box. However, if the line-over border is positive then the ink-over baseline is set to the line-over edge of the border box and if the line-under border is positive then the ink-under baseline is set to the line-under edge of the border box.
If the padding box has a top accent attachment then the border box has the same property, increased by the border-width of its inline-start egde. If the padding box has an italic correction then the border box has the same property, increased by the border-width of its inline-end egde.
The box metrics and offsets of the
margin box
are obtained from the
border box
by taking into account the corresponding
margin
properties as described in CSS.
The baselines of the margin box are the same as the one of the border box.
If the padding box has a top accent attachment then the margin box has the same property, increased by the inline-start margin. If the padding box has an italic correction then the margin box has the same property, increased by the inline-end margin.
During box layout, optional inline stretch size constraint and block stretch size constraint parameters may be used on embellished operators. The former indicates a target size that a core operator stretched along the inline axis should cover. The latter indicates an ink line-ascent and ink line-descent that a core operator stretched along the block axis should cover. Unless specified otherwise, these parameters are ignored during box layout and child boxes are laid out without any stretch size constraint.
MathML elements can overlap due to various spacing rules. They
can as well contain extra graphical items
(bars, radical symbol, etc).
A MathML element with computed style
display: block math
or display: inline math
generates a new stacking
context. The painting order
of in-flow children of such a MathML element
is exactly the same as block elements. The extra graphical
items are painted after text and background (right after
step 7.2.4 for display: inline math
and right after
step 7.2 for display: block math
).
Token elements in presentation markup are broadly intended to represent the smallest units of mathematical notation which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise, symbolic nature of mathematical notation, the various categories and properties of token elements figure prominently in MathML markup. By contrast, in textual data, individual words rarely need to be marked up or styled specially.
<mtext>
The
<mtext>
element is used to represent arbitrary text
that should be rendered as itself. In general, the
<mtext>
element is intended to denote
commentary text.
The <mtext>
element accepts the attributes described
in § 2.1.3 Global Attributes.
In the following example, <mtext>
is used
to put conditional words in a definition:
<math>
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mtext> if </mtext>
<mrow>
<mi>x</mi>
<mo>≥</mo>
<mn>1</mn>
</mrow>
<mtext> and </mtext>
<mn>2</mn>
<mtext> otherwise.</mtext>
</mrow>
</math>
<mtext>
If the element does not have its computed
display
property equal to
block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
The mtext
element is laid out as a
block box
and the min-content inline size,
max-content inline size,
inline size, block size,
first baseline set and last baseline set are determined
accordingly.
If the <mtext>
element contains only text
content without
forced line break
or
soft wrap opportunity
then in addition:
<mtext>
element.
<mi>
The
<mi>
element represents a symbolic name or
arbitrary text
that should be rendered as an identifier. Identifiers can include
variables, function names, and symbolic constants.
The <mi>
element accepts the attributes described
in § 2.1.3 Global Attributes. Its layout algorithm is
the same as the <mtext>
element.
The
user agent stylesheet
must contain the following property in order to implement automatic
italic:
mi {
text-transform: math-auto;
}
In the following example, <mi>
is used to render
variables and function names. Note that identifiers containing a
single letter are italic by default.
<math>
<mi>cos</mi>
<mo>,</mo>
<mi>c</mi>
<mo>,</mo>
<mi mathvariant="normal">c</mi>
</math>
<mn>
The
<mn>
element represents a "numeric literal" or
other data that should be rendered as a numeric literal. Generally
speaking, a numeric literal is a sequence of digits, perhaps including a
decimal point, representing an unsigned integer or real number.
The <mn>
element accepts the attributes described
in § 2.1.3 Global Attributes. Its layout algorithm is
the same as the
element.
<mtext>
In the following example, <mn>
is used to
write a decimal number.
<math>
<mn>3.141592653589793</mn>
</math>
<mo>
The
<mo>
element represents an
operator or anything that should be rendered as an operator.
In general, the notational conventions for mathematical operators
are quite complicated, and therefore MathML provides a relatively
sophisticated mechanism for specifying the rendering behavior of an
<mo>
element.
As a consequence, in MathML the list of things that should "render as an operator" includes a number of notations that are not mathematical operators in the ordinary sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as braces, parentheses, and "absolute value" bars; separators such as comma and semicolon; and mathematical accents such as a bar or tilde over a symbol. This chapter uses the term "operator" to refer to operators in this broad sense.
The <mo>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the following
attributes:
This specification does not define any observable behavior that is specific to the fence and separator attributes.
fence
and separator
to describe specific semantics of operators.
The default values may be determined from the
Operators_fence
and Operators_separator
tables, or equivalently
the human-readable version
of the operator dictionary.
In the following example, the <mo>
element
is used for the binary operator +. Default spacing is symmetric
around that operator. A tigher spacing is used if you rely
on the
attribute to force it to be
treated as a prefix operator.
Spacing can also be specified explicitly using the
form
and
lspace
attributes.
rspace
<math>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mo form="prefix">+</mo>
<mn>3</mn>
<mo lspace="2em">+</mo>
<mn>4</mn>
<mo rspace="3em">+</mo>
<mn>5</mn>
</math>
Another use case is for big operator such as summation.
When displaystyle
is true, such an operator are drawn
larger but one can change that with the largeop
attribute.
When displaystyle
is false, underscript are actually
rendered as subscript but one can change that with the
movablelimits
attribute.
<math>
<mrow displaystyle="true">
<munder>
<mo>∑</mo>
<mn>5</mn>
</munder>
<munder>
<mo largeop="false">∑</mo>
<mn>6</mn>
</munder>
</mrow>
<mrow>
<munder>
<mo>∑</mo>
<mn>5</mn>
</munder>
<munder>
<mo movablelimits="false">∑</mo>
<mn>7</mn>
</munder>
</mrow>
</math>
Operators are also used for stretchy symbols such as fences,
accents, arrows etc. In the following example, the vertical arrow
stretches to the height of the <mspace>
element.
One can override default stretch behavior with the
stretchy
attribute e.g. to force an unstretched arrow.
The symmetric
attribute allows to indicate whether
the operator
should stretchy symmetrically above and below the baseline.
Finally the minsize
and maxsize
attributes add
additional constraints over the stretch size.
<math>
<mspace height="100px" width="10px" style="background: blue"/>
<mo>↑</mo>
<mo stretchy="false">↑</mo>
<mo symmetric="true">↑</mo>
<mo minsize="150px">↑</mo>
<mo maxsize="50px">↑</mo>
</math>
Note that the default properties of operators are dictionary-based, as explained in § 3.2.4.2 Dictionary-based attributes. For example a binary operator typically has default symmetric spacing around it while a fence is generally stretchy by default.
A MathML Core element is an embellished operator if it is:
<mo>
element;<mfrac>
,
whose first in-flow child exists and is an
embellished operator;
<mpadded>
,
whose in-flow children consist (in any order) of one
embellished operator and zero or more
space-like elements.
The core operator of an embellished operator
is the <mo>
element defined recursively as
follows:
<mo>
element; is the element itself.<mfrac>
element is the core operator of its first in-flow child.
<mpadded>
is the core operator of its unique embellished operator
in-flow child.
The stretch axis of an embellished operator
is inline if its
core operator contains only text content
made of a unique character c
and that
character has stretch axis inline per
§ B.2 Stretchy Operator Axis.
Otherwise, stretch axis of the embellished operator
is block.
The form
property of an embellished operator is either
infix
, prefix
or
postfix
.
The corresponding form
attribute on the
element, if present, must be an
ASCII case-insensitive
match to one of these values.
<mo>
The algorithm for determining the form
of an embellished operator is as follows:
form
attribute is present and valid
on the core operator, then its
ASCII lowercased value
is used;
<mpadded>
or
<msqrt>
with more than one in-flow child
(ignoring all space-like children) then it has
form prefix
;
<mpadded>
or
<msqrt>
with more than one in-flow child
(ignoring all space-like children) then it has
form postfix
;
postfix
;
infix
.
The
stretchy
,
symmetric
,
largeop
,
movablelimits
,
properties of an embellished operator are
either false
or true
. In the latter
case, it
is said that the embellished operator has the
property.
The corresponding attributes on the
element, if present, must be a
boolean.
<mo>
The
lspace
,
rspace
,
minsize
properties of an embellished operator are
length-percentage.
The maxsize
property
of an embellished operator is either a
length-percentage or ∞.
The
lspace
,
rspace
,
minsize
and
maxsize
attributes on the
element, if present,
must be a length-percentage.
<mo>
The algorithm for determining the properties of an embellished operator is as follows:
stretchy
,
symmetric
,
largeop
,
movablelimits
,
lspace
,
rspace
,
maxsize
or
minsize
attribute is present and valid
on the core operator, then the
ASCII lowercased value
of this property is used;Content=T,Form=F
where F
is the form
of the
embellished operator;
form
of embellished operator was not explicitly specified
as an attribute on its core operator, then
user agents must try other dictionary entries for different
values of F
in the following order:
infix
, prefix
, postfix
;
false
for
stretchy
,
symmetric
,
largeop
and
movablelimits
properties ;
0.2777777777777778em
for
lspace
and
rspace
properties ;
100%
for the minsize
property and
∞ for the maxsize
property.
Percentage values for lspace
,
rspace
properties of an embellished operator
are interpreted relative to the value read from the dictionary
or to the fallback value above.
Percentages value for minsize
and
maxsize
properties of an embellished operator
are interpreted relative to
the target stretch size before application of
size constraints, as described in
§ 3.3.1.1 Algorithm for stretching operators along the block axis.
Font-relative lengths for
lspace
, rspace
,
minsize
and maxsize
rely on the
font style of the core operator, not the one of the
embellished operator.
If the <mo>
element does not have its computed
display
property equal to
block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
The text of the operator must only be painted if the
visibility
of
the <mo>
element is visible
.
In that case, it must be painted with the
color
of the <mo>
element.
Operators are laid out as follows:
<mo>
element is not
made
of a single character c
then fallback to the
layout algorithm of § 3.2.1.1 Layout of <mtext>
.
stretchy
property:
c
in the inline direction
with the
first available font
then fallback to the
layout algorithm of § 3.2.1.1 Layout of <mtext>
.
<mtext>
.
Tinline
then
fallback to the
layout algorithm of § 3.2.1.1 Layout of <mtext>
.
Tinline
.
Tinline
and
at position determined by the previous box metrics.
c
in the block direction
with the
first available font
then fallback to the
layout algorithm of § 3.2.1.1 Layout of <mtext>
.
(Uascent, Udescent)
then
fallback to the
layout algorithm of § 3.2.1.1 Layout of <mtext>
.
symmetric
property
then set the target sizes
Tascent
and
Tdescent
to
Sascent
and
Sdescent
respectively:
Sascent
=
max(
Uascent
− AxisHeight,
Udescent
+ AxisHeight
) + AxisHeight
Sdescent
=
max(
Uascent
− AxisHeight,
Udescent
+ AxisHeight
) − AxisHeight
Uascent
and
Udescent
respectively.
minsize
and maxsize
be the minsize
and maxsize
properties on the
operator. Percentage values are intepreted relative
to T
=
Tascent
+
Tdescent
.
If minsize
< 0 then set minsize
to 0.
If maxsize
< minsize
then
then set maxsize
to minsize
.
Then 0 ≤ minsize
≤ maxsize
:
T
= 0 then set
Tascent
and
Tdescent
to minsize
/2.
T
< minsize
then first
multiply
Tascent
by minsize
/ T
and then set Tdescent
to minsize
-
Tascent
.
maxsize
< T
then first multiply
Tascent
by
maxsize
/ T
and
then set Tdescent
to maxsize
−
Tascent
.
Tascent
+
Tdescent
.
The inline size of the content is the width of
the stretchy glyph. The stretchy glyph is shifted
towards the line-under by a value Δ so that its
center aligns with the center of the target:
the ink ascent of the content is
the ascent of the stretchy glyph − Δ
and the ink descent of the content is
the descent of the stretchy glyph + Δ.
These centers have coordinates "½(ascent − descent)"
so Δ = [(ascent of stretchy glyph − descent of stretchy glyph) − (Tascent
− Tdescent
)] / 2.
Tascent
+
Tdescent
and at position determined by the previous box metrics
shifted by Δ towards the line-over.
largeop
property and
if math-style
on
the <mo>
element is normal
,
then:
Use the
MathVariants
table to try and find a glyph of height at least
DisplayOperatorMinHeight
If none is found, fallback to the
largest non-base glyph. If none is found, fallback to
the layout algorithm of § 3.2.1.1 Layout of <mtext>
.
<mtext>
.
If the algorithm to shape a stretchy glyph has been used for one of the step above, then the italic correction of the content is set to the value returned by that algorithm.
maxsize
is equal to its default value ∞
then minsize ≤ maxsize
is satisfied but
maxsize < T
is not.
<mspace>
The
<mspace>
empty element represents a blank space of any
desired size, as set by its attributes.
The <mspace>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the following
attributes:
The
mspace@width
,
mspace@height
,
mspace@depth
, if present, must
have a value that is a valid length-percentage.
An unspecified attribute, a percentage value, or an invalid value
is interpreted as 0
.
If one of the requested values calculated is negative then it is
treated as 0
.
In the following example, <mspace>
is used to
force spacing within the formula (a 1px blue border is
added to easily visualize the space):
<math>
<mn>1</mn>
<mspace width="1em"
style="border-top: 1px solid blue"/>
<mfrac>
<mrow>
<mn>2</mn>
<mspace depth="1em"
style="border-left: 1px solid blue"/>
</mrow>
<mrow>
<mn>3</mn>
<mspace height="2em"
style="border-left: 1px solid blue"/>
</mrow>
</mfrac>
</math>
If the <mspace>
element does not have its
computed
display
property equal to
block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise,
the <mspace>
element is laid out as shown on
Figure 9.
The min-content inline size and
max-content inline size of the content are
equal to the requested inline size.
The inline size, line-ascent and line-descent of the content
are respectively
the requested inline size, line-ascent and line-descent.
A number of MathML presentation elements are "space-like" in the sense that they typically render as whitespace, and do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements often function in somewhat exceptional ways in other MathML expressions.
A MathML Core element is a space-like element if it is:
<mtext>
or
<mspace>
.
<mpadded>
all of whose in-flow children are space-like.
<mphantom>
is not
automatically defined to be space-like, unless its content is
space-like. This is because operator spacing is affected by
whether adjacent elements are space-like.
Since the <mphantom>
element is
primarily intended as an aid in aligning expressions, operators
adjacent to an <mphantom>
should behave
as if they were adjacent to the contents of the
<mphantom>
, rather than to an equivalently
sized area of whitespace.
<ms>
<ms>
element is used to represent
"string literals" in expressions meant to be interpreted by computer
algebra systems or other systems containing "programming languages".
The <ms>
element accepts the attributes described
in § 2.1.3 Global Attributes. Its layout algorithm is
the same as the
element.
<mtext>
In the following example, <ms>
is used to
write a literal string of characters:
<math>
<mi>s</mi>
<mo>=</mo>
<ms>"hello world"</ms>
</math>
lquote
and
rquote
attributes to respectively specify the strings
to use as opening and closing quotes. These are no longer supported
and the quotes must instead be specified as part of the text of the
<ms>
element. One can add CSS rules to legacy
documents in order to preserve visual rendering. For example,
in left-to-right direction:
ms:before, ms:after {
content: "\0022";
}
ms[lquote]:before {
content: attr(lquote);
}
ms[rquote]:after {
content: attr(rquote);
}
Besides tokens there are several families of MathML presentation elements. One family of elements deals with various "scripting" notations, such as subscript and superscript. Another family is concerned with matrices and tables. The remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals, or deal with general functions such as setting style properties and error handling.
<mrow>
The
<mrow>
element is used to group together any number of sub-expressions, usually
consisting of one or more <mo>
elements acting as
"operators" on one or more other expressions that are their "operands".
In the following example, <mrow>
is used to
group a sum "1 + 2/3" as a fraction numerator (first child
of <mfrac>
) and to construct a fenced expression
(first child of <msup>
) that is raised to the power of 5.
Note that <mrow>
alone does not add visual fences
around its grouped content, one has to explicitly specify them
using the <mo>
element.
Within the <mrow>
elements, one can see that
vertical alignment of children (according to the
alphabetic baseline or the mathematical baseline)
is properly performed, fences are vertically stretched and
spacing around the binary + operator automatically calculated.
<math>
<msup>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mrow>
<mn>4</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mn>5</mn>
</msup>
</math>
The <mrow>
element accepts the attributes described
in § 2.1.3 Global Attributes. An <mrow>
element with in-flow children
child1, child2, … childN
is laid out as show on Figure 10. The child boxes
are put in a row one after the other with all their
alphabetic baselines
aligned.
The algorithm for stretching operators along the block axis consists in the following steps:
LToStretch
containing
embellished operators with
a stretchy
property and block stretch axis ;
and a second list LNotToStretch
.
LNotToStretch
.
If LToStretch
is empty then stop.
If LNotToStretch
is empty, perform
layout with stretch size constraint 0 on
all the items of LToStretch
.
Uascent
and Udescent
as respectively the maximum
ink ascent and maximum ink descent of the margin boxes of
in-flow children that
have been laid out in the previous step.
LToStretch
with
block stretch size constraint
(Uascent, Udescent)
.
<mrow>
If the element does not have its computed
display
property equal to
block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
A child box is slanted if it is not an embellished operator and has nonzero italic correction.
lspace
and
rspace
.
The min-content inline size (respectively max-content inline size) are calculated using the following algorithm:
add-space
to true if
the element is a <math>
or is not an
embellished operator; and to false otherwise.
inline-offset
to 0.previous-italic-correction
to 0.inline-offset
by
previous-italic-correction
.
add-space
is true then
increment inline-offset
by
its lspace
property.
inline-offset
by
the min-content inline size
(respectively max-content inline size) of
the child's margin box.
previous-italic-correction
to
its italic correction. Otherwise set it to 0.
add-space
is true then
increment inline-offset
by
its rspace
property.
inline-offset
by
previous-italic-correction
.
inline-offset
.
The in-flow children are laid out using the algorithm for stretching operators along the block axis.
The inline size of the content is calculated like the min-content inline size and max-content inline size of the content, using the inline size of the in-flow children's margin boxes instead.
The ink line-ascent (respectively line-ascent) of the content is the maximum of the ink line-ascents (respectively line-ascents) of all the in-flow children's margin boxes. Similarly, the ink line-descent (respectively line-descent) of the content is the maximum of the ink line-descents (respectively ink line-ascents) of all the in-flow children's margin boxes.
The in-flow children are positioned using the following algorithm:
add-space
to true if
the element is a <math>
or is not an
embellished operator; and to false otherwise.
inline-offset
to 0.previous-italic-correction
to 0.inline-offset
by
previous-italic-correction
.
add-space
is true then
increment inline-offset
by
its lspace
property.
inline-offset
and its block offset such
that the alphabetic baseline of the child is aligned with the alphabetic baseline.
inline-offset
by
the inline size of the child's margin box.
previous-italic-correction
to
its italic correction. Otherwise set it to 0.
add-space
is true then
increment inline-offset
by
its rspace
property.
The italic correction of the content is set to the italic
correction of the last in-flow child, which is
the final value of previous-italic-correction
.
<mfrac>
The
<mfrac>
element is used for fractions. It can also be used to mark up
fraction-like objects such as binomial coefficients and Legendre symbols.
If the <mfrac>
element does not have its computed
display
property equal to block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
The <mfrac>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the
following attribute:
The
linethickness
attribute indicates the fraction line thickness
to use for the fraction bar.
If present, it must
have a value that is a valid length-percentage.
If the attribute is absent or has an invalid value,
FractionRuleThickness is used as the default
value. A percentage is interpreted relative to that default value.
A negative value is interpreted as 0.
The following example contains four fractions
with different linethickness
values. The bars are always
aligned with the middle of plus and minus signs.
The numerator and denominator are horizontally centered.
The fractions that are not in displaystyle
use smaller gaps and font-size.
<math>
<mn>0</mn>
<mo>+</mo>
<mfrac displaystyle="true">
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>−</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mfrac linethickness="200%">
<mn>1</mn>
<mn>234</mn>
</mfrac>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mfrac linethickness="0">
<mn>123</mn>
<mn>4</mn>
</mfrac>
<mo>)</mo>
</mrow>
</math>
The <mfrac>
element sets
to displaystyle
false
,
or if it was already false
increments
by 1, within its children.
It sets scriptlevel
math-shift
to
compact
within its second child.
To avoid visual confusion between the fraction bar and another
adjacent items (e.g. minus sign or another fraction's bar),
a default 1-pixel space is added around the element.
The user agent stylesheet
must contain the following rules:
mfrac {
padding-inline-start: 1px;
padding-inline-end: 1px;
}
mfrac > * {
math-depth: auto-add;
math-style: compact;
}
mfrac > :nth-child(2) {
math-shift: compact;
}
If the <mfrac>
element
has less or more than two in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called
numerator, the second in-flow child is called
denominator and the layout algorithm is explained below.
<mrow>
<mfrac>
element has two children
that are in-flow. Hence the CSS rules basically performs
scriptlevel
, displaystyle
and math-shift
changes for the numerator and
denominator.
If the fraction line thickness is nonzero, the
<mfrac>
element is laid out as shown on Figure 12.
The fraction bar must only be painted if the
visibility
of
the <mfrac>
element is visible
.
In that case, the fraction bar must be painted with the
color
of the <mfrac>
element.
The min-content inline size (respectively max-content inline size) of content is the maximum between the min-content inline size (respectively max-content inline size) of the numerator's margin box and the min-content inline size (respectively max-content inline size) of the denominator's margin box.
If there is an inline stretch size constraint or a block stretch size constraint then the numerator is also laid out with the same stretch size constraint otherwise it is laid out without any stretch size constraint. The denominator is always laid out without any stretch size constraint.
The inline size of the content is the maximum between the inline size of the numerator's margin box and the inline size of the denominator's margin box.
NumeratorShift
is the maximum between:
math-style
is compact
(respectively normal
).
math-style
is compact
(respectively normal
) +
the ink line-descent of the numerator's margin box.
DenominatorShift
is the maximum between:
math-style
is compact
(respectively normal
).
math-style
is compact
(respectively normal
) +
the ink line-ascent of the denominator's margin box −
the AxisHeight.
The line-ascent of the content is the maximum between:
Numerator Shift
+
the line-ascent of the numerator's margin box.
Denominator Shift
+
the line-ascent of the denominator's margin box
The line-descent of the content is the maximum between:
Numerator Shift
+ the line-descent of the numerator's margin box.
Denominator Shift
+ the line-descent of the denominator's margin box.
The inline offset of the numerator (respectively denominator) is the half the inline size of the content − half the inline size of the numerator's margin box (respectively denominator's margin box).
The alphabetic baseline of the numerator (respectively denominator)
is shifted away from the alphabetic baseline by a distance of
NumeratorShift
(respectively
DenominatorShift
)
towards the line-over (respectively line-under).
The inline size of the fraction bar is the inline size of the content and its inline offset is 0. The center of the fraction bar is shifted away from the alphabetic baseline by a distance of AxisHeight towards the line-over. Its block size is the fraction line thickness.
If the fraction line thickness is zero,
the <mfrac>
element is instead laid out as
shown on Figure 13.
The min-content inline size, max-content inline size and inline size of the content are calculated the same as in § 3.3.2.1 Fraction with nonzero line thickness.
If there is an inline stretch size constraint or a block stretch size constraint then the numerator is also laid out with the same stretch size constraint and otherwise it is laid out without any stretch size constraint. The denominator is always laid out without any stretch size constraint.
If the math-style
is compact
then
TopShift
and
BottomShift
are respectively
set to StackTopShiftUp and StackBottomShiftDown.
Otherwise math-style
is normal
and
they are respectively set to StackTopDisplayStyleShiftUp
and StackBottomDisplayStyleShiftDown.
The Gap
is defined to be
(BottomShift
−
the ink line-ascent of the denominator's margin box) +
(TopShift
−
the ink line-descent of the numerator's margin box).
If math-style
is compact
then GapMin
is StackGapMin
otherwise math-style
is normal
and it is StackDisplayStyleGapMin.
If Δ = GapMin
− Gap
is positive then
TopShift
and BottomShift
are respectively increased by Δ/2 and Δ − Δ/2.
The line-ascent of the content is the maximum between:
TopShift
+
the line-ascent of the numerator's margin box.
BottomShift
+ the line-ascent of the denominator's margin box.
The line-descent of the content is the maximum between:
TopShift
+ the line-descent of the numerator's margin box.
BottomShift
+ the line-descent of the denominator's margin box.
The inline offsets of the numerator and denominator are calculated the same as in § 3.3.2.1 Fraction with nonzero line thickness.
The alphabetic baseline of the numerator (respectively denominator) is
shifted away from the alphabetic baseline by a distance of
TopShift
(respectively −
BottomShift
) towards the
line-over (respectively line-under).
<msqrt>
, <mroot>
The
<msqrt>
and
<mroot>
elements construct radicals. The <msqrt>
element is
used for square roots, while the <mroot>
element is
used to draw radicals with indices, e.g. a cube root.
The <msqrt>
and <mroot>
elements accept the attributes described
in § 2.1.3 Global Attributes.
The following example contains a square root
written with <msqrt>
and a cube root written
with <mroot>
.
Note that <msqrt>
has several children and the
square root applies to all of them.
<mroot>
has exactly two children: it is a
root of index the second child (the number 3), applied to the
the first child (the square root).
Also note these elements only change the font-size within the
<mroot>
index, but it is scaled down more than
within the numerator and denumerator of the fraction.
<math>
<mroot>
<msqrt>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mn>4</mn>
</msqrt>
<mn>3</mn>
</mroot>
<mo>+</mo>
<mn>0</mn>
</math>
The <msqrt>
and <mroot>
elements sets math-shift
to
compact
.
The <mroot>
element sets
increments
by 2, and sets scriptlevel
to "false" in all
but its first child.
The user agent stylesheet
must contain the following rule in order to implement that behavior:
displaystyle
mroot > :not(:first-child) {
math-depth: add(2);
math-style: compact;
}
mroot, msqrt {
math-shift: compact;
}
If the <msqrt>
or <mroot>
element do not have their computed
display
property equal to block math
or inline math
then they are laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
If the <mroot>
has less or more than two
in-flow children,
its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called
mroot base and
the second in-flow child is called
mroot index
and its layout algorithm is explained below.
<mrow>
<mroot>
element has two children
that are in-flow. Hence the CSS rules basically performs
scriptlevel
and displaystyle
changes for the index.
The children of the
<msqrt>
element are laid out
using the algorithm of the
element
to produce a box that is also called the msqrt base.
In particular, the
algorithm for stretching operators along the block axis is used.
<mrow>
The radical symbol must only be painted if the
visibility
of
the <msqrt>
or <mroot>
element is visible
.
In that case, the radical symbol must be painted with the
color
of that element.
The radical glyph is the glyph obtained for the character U+221A SQUARE ROOT.
The radical gap is given by
RadicalVerticalGap
if the math-style
is compact
and
RadicalDisplayStyleVerticalGap
if the math-style
is normal
.
The radical target size for the stretchy radical glyph is the sum of RadicalRuleThickness, radical gap and the ink height of the base.
The box metrics of the radical glyph and painting of the surd are given by the algorithm to shape a stretchy glyph to block dimension the target size for the radical glyph.
The <msqrt>
element is laid out as shown on
Figure 14.
The min-content inline size (respectively max-content inline size) of the content is the sum of the preferred inline size of a glyph stretched along the block axis for the radical glyph and of the min-content inline size (respectively max-content inline size) of the base's margin box.
The inline size of the content is the sum of the advance width of the box metrics of the radical glyph and of the inline size of the base's margin's box.
The line-ascent of the content is the maximum between:
The line-descent of the content is the maximum between:
The inline size of the overbar is the inline size of the base's margin's box. The inline offsets of the base and overbar are also the same and equal to the width of the box metrics of the radical glyph.
The alphabetic baseline of the base is aligned with the alphabetic baseline. The block size of the overbar is RadicalRuleThickness. Its vertical center is shifted away from the alphabetic baseline by a distance towards the line-over equal to the line-ascent of the content, minus the RadicalExtraAscender, minus half the RadicalRuleThickness.
Finally, the painting of the surd is performed:
The <mroot>
element is laid out as shown on
Figure 15.
The root index is first ignored and the base and
radical glyph are laid out as
shown on figure Figure 14
using the same algorithm as in
§ 3.3.3.2 Square root
in order to produce a margin box B (represented in green).
The min-content inline size (respectively max-content inline size) of the content is the sum of max(0, RadicalKernBeforeDegree), the index's min-content inline size (respectively max-content inline size) of the index's margin box, max(−min-content inline size, RadicalKernAfterDegree) (respectively max(−max-content inline size, RadicalKernAfterDegree)) and of the min-content inline size (respectively max-content inline size) of B.
Using the same clamping, AdjustedRadicalKernBeforeDegree and AdjustedRadicalKernAfterDegree are respectively defined as max(0, RadicalKernBeforeDegree) and is max(−inline size of the index's margin box, RadicalKernAfterDegree).
The inline size of the content is the sum of AdjustedRadicalKernBeforeDegree, the inline size of the index's margin box, AdjustedRadicalKernAfterDegree and of the inline size of B.
The line-ascent of the content is the maximum between:
The line-descent of the content is the maximum between:
The inline offset of the index is AdjustedRadicalKernBeforeDegree. The inline-offset of the base is the same + the inline size of the index's margin box.
The alphabetic baseline of B is aligned with the alphabetic baseline. The alphabetic baseline of the index is shifted away from the line-under edge by a distance of RadicalDegreeBottomRaisePercent × the block size of B + the line-descent of the index's margin box.
<mstyle>
Historically, the
<mstyle>
element was introduced to make
style changes that affect the rendering of its contents.
The <mstyle>
element accepts the attributes described in
§ 2.1.3 Global Attributes. Its layout algorithm is the
same as the
element.
<mrow>
<mstyle>
is implemented for compatibility with full MathML. Authors whose only target is MathML Core are encouraged to use CSS for styling.
In the following example,
<mstyle>
is used to set the scriptlevel
and displaystyle
.
Observe this is respectively affecting the
font-size and placement of subscripts of their
descendants. In MathML Core, one could just have used
<mrow>
elements instead.
<math>
<munder>
<mo movablelimits="true">*</mo>
<mi>A</mi>
</munder>
<mstyle scriptlevel="1">
<mstyle displaystyle="true">
<munder>
<mo movablelimits="true">*</mo>
<mi>B</mi>
</munder>
<munder>
<mo movablelimits="true">*</mo>
<mi>C</mi>
</munder>
</mstyle>
<munder>
<mo movablelimits="true">*</mo>
<mi>D</mi>
</munder>
</mstyle>
</math>
<merror>
The
<merror>
element displays its contents as an
”error message”. The intent of this element is to provide a standard way
for programs that generate MathML from other input to report syntax errors
in their input.
In the following example,
<merror>
is used to indicate a parsing error
for some LaTeX-like input:
<math>
<mfrac>
<merror>
<mtext>Syntax error: \frac{1}</mtext>
</merror>
<mn>3</mn>
</mfrac>
</math>
The <merror>
element accepts the attributes described in
§ 2.1.3 Global Attributes. Its layout algorithm is the
same as the
element.
The user agent stylesheet
must contain the following rule in order to visually highlight the error
message:
<mrow>
merror {
border: 1px solid red;
background-color: lightYellow;
}
<mpadded>
The
<mpadded>
element renders the same as its in-flow child content, but with the
size and relative positioning point of its
content modified according to <mpadded>
’s attributes.
The <mpadded>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the following
attributes:
The
mpadded@width
,
mpadded@height
,
mpadded@depth
,
mpadded@lspace
and
mpadded@voffset
if present, must
have a value that is a valid length-percentage.
In the following example, <mpadded>
is used to
tweak spacing around a fraction
(a blue background is used to visualize it).
Without attributes, it behaves like an <mrow>
but
the attributes allow to specify the size of the box
(width, height, depth) and position of the fraction within that
box (lspace and voffset).
<math>
<mrow>
<mn>1</mn>
<mpadded style="background: lightblue;">
<mfrac>
<mn>23456</mn>
<mn>78</mn>
</mfrac>
</mpadded>
<mn>9</mn>
</mrow>
<mo>+</mo>
<mrow>
<mn>1</mn>
<mpadded lspace="2em" voffset="-1em" height="1em" depth="3em" width="7em"
style="background: lightblue;">
<mfrac>
<mn>23456</mn>
<mn>78</mn>
</mfrac>
</mpadded>
<mn>9</mn>
</mrow>
</math>
In-flow children
of the <mpadded>
element are laid out
using the algorithm of the
element
to produce the
mpadded inner box for the content with parameters called
inner inline size, inner line-ascent and inner line-descent.
The requested <mrow>
<mpadded>
parameters are determined as follows:
width
(respectively height
,
depth
, lspace
, voffset
)
attribute is absent, invalid or a
length-percentage
then the requested width
(respectively height, depth, lspace, voffset)
is the inner inline size
(respectively inner line-ascent, inner line-descent,
0
,
0
).
width
attribute
(respectively height
, depth
,
lspace
, voffset
attributes).
If one of the requested width, depth, height or lspace values
is negative then it is treated as 0
.
<voffset>
values are not clamped to
0
.
<mpadded>
If the <mpadded>
element does not have its
computed
display
property equal to block math
or inline math
then it is laid out according to the CSS specification where
the corresponding value is described.
Otherwise, it is laid out as shown on
Figure 16.
The min-content inline size (respectively max-content inline size) of the content is the requested width calculated in § 3.3.6.1 Inner box and requested parameters but using the min-content inline size (respectively max-content inline size) of the mpadded inner box instead of the "inner inline size".
The inline size of the content is the requested width calculated in § 3.3.6.1 Inner box and requested parameters.
The line-ascent of the content is the requested height. The line-descent of the content is the requested depth.
The mpadded inner box is placed so that its alphabetic baseline is shifted away from the alphabetic baseline by the requested voffset towards the line-over.
<mphantom>
Historically, the
<mphantom>
element was introduced to render
its content invisibly, but with the same metrics size and other dimensions,
including alphabetic baseline positionthat its contents would have if they were
rendered normally.
In the following example,
<mphantom>
is used to ensure alignment of
corresponding parts of the numerator and denominator of a
fraction:
<math>
<mfrac>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mi>z</mi>
</mrow>
<mrow>
<mi>x</mi>
<mphantom>
<mo form="infix">+</mo>
<mi>y</mi>
</mphantom>
<mo>+</mo>
<mi>z</mi>
</mrow>
</mfrac>
</math>
The <mphantom>
element accepts the attributes described
in § 2.1.3 Global Attributes. Its layout algorithm is
the same as the
element.
The user agent stylesheet
must contain the following rule in order to hide the content:
<mrow>
mphantom {
visibility: hidden;
}
<mphantom>
is implemented for compatibility with full MathML. Authors whose only target is MathML Core are encouraged to use CSS for styling.
The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a single general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locations around a given base. However, in order to capture the abstract structure of common notation better, MathML provides several more specialized scripting elements.
In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above and below the base. These elements can be used to place limits on large operators, or for placing accents and lines above or below the base.
<msub>
, <msup>
, <msubsup>
The <msub>
,
<msup>
and
<msubsup>
elements are used to attach
subscript and superscript to a MathML expression.
They accept the attributes described in
§ 2.1.3 Global Attributes.
The following example, shows basic use of subscripts and superscripts. The font-size is automatically scaled down within the scripts.
<math>
<msub>
<mn>1</mn>
<mn>2</mn>
</msub>
<mo>+</mo>
<msup>
<mn>3</mn>
<mn>4</mn>
</msup>
<mo>+</mo>
<msubsup>
<mn>5</mn>
<mn>6</mn>
<mn>7</mn>
</msubsup>
</math>
If the
<msub>
,
<msup>
or
<msubsup>
elements do not have their
computed
display
property equal to block math
or inline math
then they are laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
<msub>
,
<msup>
, <msubsup>
If the <msub>
element
has less or more than two in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
msub base, the second in-flow child is called the
msub subscript and the layout algorithm is explained
in § 3.4.1.2 Base with subscript.
<mrow>
If the <msup>
element
has less or more than two in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
msup base, the second in-flow child is called the
msup superscript and the layout algorithm is explained
in § 3.4.1.3 Base with superscript.
<mrow>
If the <msubsup>
element
has less or more than three in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
msubsup base, the second in-flow child
is called the msubsup subscript,
its third in-flow child is called
the msupsup superscript and the layout algorithm is explained
in § 3.4.1.4 Base with subscript and superscript.
<mrow>
The <msub>
element is laid out as shown on
Figure 17.
LargeOpItalicCorrection
is the italic correction of the base
if it is an embellished operator with
the
property and 0 otherwise.
largeop
The
min-content inline size (respectively max-content inline size) of the content is the
min-content inline size (respectively max-content inline size) inline size of the base's margin box −
LargeOpItalicCorrection
+
min-content inline size (respectively max-content inline size) of
the subscript's margin box + SpaceAfterScript.
If there is an inline stretch size constraint or a block stretch size constraint then the base is also laid out with the same stretch size contraint and otherwise it is laid out without any stretch size constraint. The scripts are always laid out without any stretch size constraint.
The inline size of the content
is the inline size of the base's margin box −
LargeOpItalicCorrection
+
the inline size of
the subscript's margin box + SpaceAfterScript.
SubShift
is the maximum between:
The line-ascent of the content is the maximum between:
SubShift
.The line-descent of the content is the maximum between:
SubShift
.
The inline offset of the base is 0 and the inline offset of the
subscript is the inline size of the base's margin box −
LargeOpItalicCorrection
.
The base is placed so that its alphabetic baseline
matches the alphabetic baseline. The subscript is placed so that its alphabetic baseline
is shifted away from the alphabetic baseline by SubShift
towards the line-under.
The <msup>
element is laid out as shown on
Figure 18.
ItalicCorrection
is the italic correction of the base
if it is not an embellished operator with
the
property and 0 otherwise.
largeop
The
min-content inline size (respectively max-content inline size) of
the content
is the
min-content inline size (respectively max-content inline size) of
the base's margin box +
ItalicCorrection
+
the min-content inline size (respectively max-content inline size) of
the superscript's margin box + SpaceAfterScript.
If there is an inline stretch size constraint or a block stretch size constraint then the base is also laid out with the same stretch size contraint and otherwise it is laid out without any stretch size constraint. The scripts are always laid out without any stretch size constraint.
The inline size of the content
is the inline size of the base's margin box +
ItalicCorrection
+
the inline size of
the superscript's margin box + SpaceAfterScript.
SuperShift
is the maximum between:
math-shift
property equal to
compact
, or
SuperscriptShiftUp otherwise.The line-ascent of the content is the maximum between:
SuperShift
.The line-descent of the content is the maximum between:
SuperShift
.
The inline offset of the base is 0 and the inline offset of
superscript is the inline size of the base's margin box +
ItalicCorrection
.
The base is placed so that its alphabetic baseline
matches the alphabetic baseline. The superscript is placed so that its
alphabetic baseline
is shifted away from the alphabetic baseline by SuperShift
towards the line-over.
The <msubsup>
element is laid out as shown on
Figure 18.
LargeOpItalicCorrection
and SubShift
are set as in § 3.4.1.2 Base with subscript.
ItalicCorrection
and SuperShift
are set as in § 3.4.1.3 Base with superscript.
The min-content inline size (respectively max-content inline size and inline size) of the content is the maximum between the min-content inline size (respectively max-content inline size and inline size) of the content calculated in § 3.4.1.2 Base with subscript and § 3.4.1.3 Base with superscript.
If there is an inline stretch size constraint or a block stretch size constraint then the base is also laid out with the same stretch size contraint and otherwise it is laid out without any stretch size constraint. The scripts are always laid out without any stretch size constraint.
If there is an inline stretch size constraint or a block stretch size constraint then the base is also laid out with the same stretch size contraint and otherwise it is laid out without any stretch size constraint. The scripts are always laid out without any stretch size constraint.
SubSuperGap
is the gap between the two scripts
along the block axis and is defined by
(SubShift
− the ink line-ascent of the subscript's
margin box) +
(SuperShift
− the ink line-descent of the
superscript's margin box).
If SubSuperGap
is not at least
SubSuperscriptGapMin then the following steps are
performed to ensure that the condition holds:
SuperShift
− the ink line-descent of the
superscript's margin box).
If Δ > 0 then set Δ to the minimum between Δ set
SubSuperscriptGapMin − SubSuperGap
and
increase SuperShift
(and so
SubSuperGap
too) by Δ.
SubSuperGap
.
If Δ > 0 then
increase SubscriptShift
(and so
SubSuperGap
too) by Δ.
The ink line-ascent (respectively line-ascent, ink line-descent,
line-descent) of the content
is set to the maximum
of the
ink line-ascent (respectively line-ascent, ink line-descent,
line-descent) of the content
calculated in
in § 3.4.1.2 Base with subscript and
§ 3.4.1.3 Base with superscript
but using the adjusted values SubShift
and
SuperShift
above.
The inline offset and block offset of the base and scripts are performed the same as described in § 3.4.1.2 Base with subscript and § 3.4.1.3 Base with superscript.
Even when the subscript (respectively superscript) is an empty
box, <subsup>
does not generally render the same as
§ 3.4.1.3 Base with superscript
(respectively § 3.4.1.2 Base with subscript)
because of the additional constraint on
SubSuperGap
.
Moreover, positioning the empty subscript
(respectively superscript)
may also change the total size.
In order to keep the algorithm simple, no attempt is made to handle empty scripts in a special way.
<munder>
, <mover>
, <munderover>
The <munder>
,
<mover>
and
<munderover>
elements are used to
attach
accents or limits placed under or over a MathML expression.
The <munderover>
element accepts the attribute
described in § 2.1.3 Global Attributes as well as the
following attributes:
Similarly, the <mover>
element
(respectively <munder>
element) accepts the
attribute described in § 2.1.3 Global Attributes
as well as the
attribute (respectively the
accent
attribute).
accentunder
accent
,
accentunder
,
attributes, if present, must have values that are booleans.
If these attributes are absent or invalid, they are treated as
equal to false
.
User agents must implement them as described in
§ 3.4.4 Displaystyle, scriptlevel and math-shift in scripts.
The following example, shows basic use of under and over scripts. The font-size is automatically scaled down within the scripts, unless they are meant to be accents.
<math>
<munder>
<mn>1</mn>
<mn>2</mn>
</munder>
<mo>+</mo>
<mover>
<mn>3</mn>
<mn>4</mn>
</mover>
<mo>+</mo>
<munderover>
<mn>5</mn>
<mn>6</mn>
<mn>7</mn>
</munderover>
<mo>+</mo>
<munderover accent="true">
<mn>8</mn>
<mn>9</mn>
<mn>10</mn>
</munderover>
<mo>+</mo>
<munderover accentunder="true">
<mn>11</mn>
<mn>12</mn>
<mn>13</mn>
</munderover>
</math>
If the
<munder>
,
<mover>
or
<munderover>
elements do not have their
computed
display
property equal to block math
or inline math
then they are laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
<munder>
,
<mover>
, <munderover>
If the <munder>
element
has less or more than two in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
munder base and the second in-flow child is called the
munder underscript.
<mrow>
If the <mover>
element
has less or more than two in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
mover base and the second in-flow child is called the
mover overscript.
<mrow>
If the <munderover>
element
has less or more than three in-flow children, its layout algorithm
is the same as the
element.
Otherwise, the first in-flow child is called the
munderover base, the second in-flow child
is called the munderover underscript
and its third in-flow child is called
the munderover overscript.
<mrow>
If the
<munder>
, <mover>
or
<munderover>
elements have a computed
math-style
property equal to compact
and their base is an embellished operator with the
property, then
their layout algorithms are respectively
the same as the ones described for
movablelimits
<msub>
, <msup>
and
<msubsup>
in
§ 3.4.1.2 Base with subscript,
§ 3.4.1.3 Base with superscript and
§ 3.4.1.4 Base with subscript and superscript.
Otherwise, the
<mover>
, <mover>
and
<munderover>
layout algorithms are respectively
described in
§ 3.4.2.3 Base with underscript,
§ 3.4.2.4 Base with overscript and
§ 3.4.2.5 Base with underscript and overscript
The algorithm for stretching operators along the inline axis is as follows.
LToStretch
containing
embellished operators with
a stretchy
property and inline stretch axis ;
and a second list LNotToStretch
.
LNotToStretch
.
If LToStretch
is empty then stop.
If LNotToStretch
is empty, perform
layout with stretch size constraint 0 on
all the items of LToStretch
.
T
to
the maximum inline size of the
margin boxes of child boxes that have been laid out in the
previous step.
LToStretch
with inline stretch size constraint T
.
The <munder>
element is laid out as shown on
Figure 20.
LargeOpItalicCorrection
is the italic correction of the base
if it is an embellished operator with
the
property and 0 otherwise.
largeop
The min-content inline size (respectively max-content inline size) of the content are calculated like the inline size of the content below but replacing the inline sizes of the base's margin box and underscript's margin box with the min-content inline size (respectively max-content inline size) of the base's margin box and underscript's margin box.
The in-flow children are laid out using the algorithm for stretching operators along the inline axis.
The inline size of the content is calculated by determining the absolute difference between:
LargeOpItalicCorrection
.LargeOpItalicCorrection
.
If m is the minimum calculated in the second item above then the
inline offset
of the base is −m − half the inline size of the base's margin box.
The inline offset of the underscript is
−m − half the inline size of the underscript's margin box −
half LargeOpItalicCorrection
.
Parameters
UnderShift
and UnderExtraDescender
are determined by considering three cases in the following order:
The base is an
embellished operator with the
property.
largeop
UnderShift
is the maximum of
UnderExtraDescender
is 0.
The base is an
embellished operator with the
property
and stretch axis inline.
stretchy
UnderShift
is the maximum of:
UnderExtraDescender
is 0.
UnderShift
is equal to UnderbarVerticalGap
if the accentunder
attribute is not an
ASCII case-insensitive match to "true"
and to zero otherwise.
UnderExtraAscender
is
UnderbarExtraDescender.
The line-ascent of the content is the maximum between:
UnderShift
.The line-descent of the content is the maximum between:
UnderShift
+ UnderExtraAscender
.
The alphabetic baseline of the base is aligned with the alphabetic baseline.
The alphabetic baseline of the underscript is shifted away from the alphabetic baseline
and towards the line-under by a distance equal to
the ink line-descent of the base's margin box
+ UnderShift
.
The <mover>
element is laid out as shown on
Figure 21.
LargeOpItalicCorrection
is the italic correction of the base
if it is an embellished operator with
the
property and 0 otherwise.
largeop
The min-content inline size (respectively max-content inline size) of the content are calculated like the inline size of the content below but replacing the inline sizes of the base's margin box and underscript's margin box with the min-content inline size (respectively max-content inline size) of the base's margin box and underscript's margin box.
The in-flow children are laid out using the algorithm for stretching operators along the inline axis.
The TopAccentAttachment
is the
top accent attachment of the overscript or
half the inline size of the overscript's margin box
if it is undefined.
The inline size of the content is calculated by applying the algorithm for stretching operators along the inline axis for layout and determining the absolute difference between:
TopAccentAttachment
+
half LargeOpItalicCorrection
.TopAccentAttachment
+
half LargeOpItalicCorrection
.
If m is the minimum calculated in the second item above then the
inline offset
of the base is −m − half the inline size of the base's margin.
The inline offset of the overscript is
−m − half the inline size of the overscript's margin box +
half LargeOpItalicCorrection
.
Parameters
OverShift
and OverExtraDescender
are determined by considering three cases in the following order:
The base is an
embellished operator with the
property.
largeop
OverShift
is the maximum of
OverExtraAscender
is 0.
The base is an
embellished operator with the
property and
stretch axis inline.
stretchy
OverShift
is the maximum of:
OverExtraDescender
is 0.
Otherwise, OverShift
is equal to
accent
attribute is not an
ASCII case-insensitive match to "true"
.
OverExtraAscender
is OverbarExtraAscender.
The line-ascent of the content is the maximum between:
OverShift
+ OverExtraAscender
.The line-descent of the content is the maximum between:
OverShift
.
The alphabetic baseline of the base is aligned with the alphabetic baseline.
The alphabetic baseline of the overscript is shifted away from the alphabetic baseline
and towards the line-over by a distance equal to
the ink line-ascent of the base + OverShift
.
The general layout of <munderover>
is shown on
Figure 22. The
LargeOpItalicCorrection
,
UnderShift
,
UnderExtraDescender
,
OverShift
,
OverExtraDescender
parameters
are calculated the same as in
§ 3.4.2.3 Base with underscript and
§ 3.4.2.4 Base with overscript.
The min-content inline size, max-content inline size and inline size of the content are calculated as an absolute difference between a maximum inline offset and minimum inline offset. These extrema are calculated by taking the extremum value of the corresponding extrema calculated in § 3.4.2.3 Base with underscript and § 3.4.2.4 Base with overscript. The inline offsets of the base, underscript and overscript are calculated as in these sections but using the new minimum m (minimum of the corresponding minima).
Like in these sections, the in-flow children are laid out using the algorithm for stretching operators along the inline axis.
The line-ascent and line-descent of the content are also calculated by taking the extremum value of the extrema calculated in § 3.4.2.3 Base with underscript and § 3.4.2.4 Base with overscript.
Finally, the alphabetic baselines of the base, undescript and overscript are calculated as in sections § 3.4.2.3 Base with underscript and § 3.4.2.4 Base with overscript.
When the underscript (respectively overscript) is an empty box, the base and overscript (respectively underscript) are laid out similarly to § 3.4.2.4 Base with overscript (respectively § 3.4.2.3 Base with underscript) but the position of the empty underscript (respectively overscript) may add extra space. In order to keep the algorithm simple, no attempt is made to handle empty scripts in a special way.
<mmultiscripts>
Presubscripts and tensor notations are represented
the <mmultiscripts>
with hints given by the
<mprescripts>
(to distinguish postscripts and prescripts)
and
<none>
elements
(to indicate empty scripts).
These element accept the attributes described in
§ 2.1.3 Global Attributes.
The following example, shows basic use of prescripts
and postscripts, involving
<none>
and <mprescripts>
.
The font-size is automatically scaled down within the scripts.
<math>
<mmultiscripts>
<mn>1</mn>
<mn>2</mn>
<mn>3</mn>
<none/>
<mn>5</mn>
<mprescripts/>
<mn>6</mn>
<none/>
<mn>8</mn>
<mn>9</mn>
</mmultiscripts>
</math>
If the
<mmultiscripts>
,
<mprescripts>
or
<none>
elements do not have their
computed
display
property equal to block math
or inline math
then they are laid out according to the CSS specification where
the corresponding value is described.
Otherwise, the layout below is performed.
The empty
<mprescripts>
and <none>
elements are laid out as an
element.
<mrow>
A valid <mmultiscripts>
element contains the
following in-flow children:
<mprescripts>
element.
<mprescripts>
element.
These scripts form a (possibly empty) list
subscript, superscript, subscript, superscript,
subscript, superscript, etc.
Each consecutive couple of children subscript, superscript
is called a
subscript/superscript pair.
<mprescripts>
element and
an even number of in-flow children called
mmultiscripts prescripts, none of them being a
<mprescripts>
element.
These scripts form a (possibly empty) list of
subscript/superscript pair.
If an <mmultiscripts>
element is not valid then
it is laid out the same as the
element.
Otherwise the layout algorithm is explained below.
<mrow>
<none>
element is preserved for backward
compatibility reasons but is actually not taken into account
in the layout algorithm.
The <mmultiscripts>
element is laid out as
shown on Figure 23.
For each postscript pair, the ItalicCorrection
LargeOpItalicCorrection
are defined as
in § 3.4.1.2 Base with subscript
and § 3.4.1.3 Base with superscript.
The min-content inline size (respectively max-content inline size) of the content is calculated the same as the inline size of the content below, but replacing "inline size" with "min-content inline size" (respectively "max-content inline size") for the base's margin box and scripts's margin boxes.
If there is an inline stretch size constraint or a block stretch size constraint the base is also laid out with the same stretch size constraint. Otherwise it is laid out without any stretch size constraint. The other elements are always laid out without any stretch size constraint.
The inline size of the content is calculated with the following algorithm:
inline-offset
to 0.
For each prescript pair, increment
inline-offset
by SpaceAfterScript + the
maximum of
inline-offset
by the inline size of the
base's margin box and
set inline-size
to inline-offset
.
For each postscript pair, modify
inline-size
to be at least:
LargeOpItalicCorrection
.
ItalicCorrection
.
Increment inline-offset
to the maximum of:
Increment inline-offset
by
SpaceAfterScript.
inline-size
SubShift
(respectively SuperShift
)
is calculated by taking the maximum of all subshifts
(respectively supershifts) of each
subscript/superscript pair as described in
§ 3.4.1.4 Base with subscript and superscript.
The line-ascent of the content is calculated
by taking the maximum of all the line-ascent
of each subscript/superscript pair as described in
§ 3.4.1.4 Base with subscript and superscript
but using the SubShift
and
SuperShift
values calculated above.
The line-descent of the content is calculated
by taking the maximum of all the line-descent
of each subscript/superscript pair as described in
§ 3.4.1.4 Base with subscript and superscript
but using the SubShift
and
SuperShift
values calculated above.
Finally, the placement of the in-flow children is performed using the following algorithm:
inline-offset
to 0.For each prescript pair:
inline-offset
by
SpaceAfterScript.
pair-inline-size
to the maximum of
inline-offset
+ pair-inline-size
− the inline size of the subscript's margin box.
inline-offset
+ pair-inline-size
− the inline size of the superscript's margin box.
SubShift
(respectively SuperShift
)
towards the line-under (respectively line-over).
inline-offset
by
pair-inline-size
.
<mprescript>
boxes
at inline offsets
inline-offset
and with their alphabetic baselines
aligned with the alphabetic baseline.
For each postscript pair:
pair-inline-size
to the maximum of
inline-offset
− LargeOpItalicCorrection
.
inline-offset
+ ItalicCorrection
.
SubShift
(respectively SuperShift
)
towards the line-under (respectively line-over).
inline-offset
by
pair-inline-size
inline-offset
by
SpaceAfterScript.
An <mmultiscripts>
with only one
postscript pair is laid out the same as a
<msubsup>
with the same in-flow children.
However, as
noticed for
<msubsup>
,
if additionally the subscript (respectively superscript) is an
empty box then it is not necessarily laid out the same as an
<msub>
(respectively <msup>
) element.
In order to keep the algorithm simple, no attempt is made to
handle empty or <none>
scripts in a special
way.
For all scripted elements, the rule of thumb is to set
to displaystyle
false
and
to increment
in all child
elements but the first one.
However, an scriptlevel
(respectively
<mover>
)
element with an <munderover>
attribute that is an
ASCII case-insensitive
match to accent
"true"
does not increment scriptlevel within
its second child (respectively third child). Similarly,
and
<mover>
elements
with an <munderover>
attribute that is an
ASCII case-insensitive
match to accentunder
"true"
do not increment scriptlevel within
their second child.
<mmultiscripts>
sets
to
math-shift
compact
on its children at even position if they are
before an <mprescripts>
, and on those at odd position
if they are after
an <mprescripts>
.
The <msub<
and <msubsup<
elements set
to
math-shift
compact
on their second child.
An
and
<mover>
elements with an <munderover>
attribute that is an
ASCII case-insensitive
match to accent
"true"
also sets
to
math-shift
compact
within their first child.
The § A. User Agent Stylesheet must contain the following style in order to implement this behavior:
msub > :not(:first-child),
msup > :not(:first-child),
msubsup > :not(:first-child),
mmultiscripts > :not(:first-child),
munder > :not(:first-child),
mover > :not(:first-child),
munderover > :not(:first-child) {
math-depth: add(1);
math-style: compact;
}
munder[accentunder="true" i] > :nth-child(2),
mover[accent="true" i] > :nth-child(2),
munderover[accentunder="true" i] > :nth-child(2),
munderover[accent="true" i] > :nth-child(3) {
font-size: inherit;
}
msub > :nth-child(2),
msubsup > :nth-child(2),
mmultiscripts > :nth-child(even),
mmultiscripts > mprescripts ~ :nth-child(odd),
mover[accent="true" i] > :first-child,
munderover[accent="true" i] > :first-child {
math-shift: compact;
}
mmultiscripts > mprescripts ~ :nth-child(even) {
math-shift: inherit;
}
<mprescript>
is empty.
Hence the CSS rules essentially performs automatic displaystyle
and
scriptlevel
changes for the scripts ; and
math-shift
changes for
subscripts and sometimes the base.
Matrices, arrays and other table-like mathematical notation are marked up
using
<mtable>
<mtr>
elements. These elements are similar to the
<mtd>
<table>
,
<tr>
and
<td>
elements of [HTML].
The following example, how tabular layout allows to write a matrix. Note that it is vertically centered with the fraction bar and the middle of the equal sign.
<math>
<mfrac>
<mi>A</mi>
<mn>2</mn>
</mfrac>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable>
<mtr>
<mtd><mn>1</mn></mtd>
<mtd><mn>2</mn></mtd>
<mtd><mn>3</mn></mtd>
</mtr>
<mtr>
<mtd><mn>4</mn></mtd>
<mtd><mn>5</mn></mtd>
<mtd><mn>6</mn></mtd>
</mtr>
<mtr>
<mtd><mn>7</mn></mtd>
<mtd><mn>8</mn></mtd>
<mtd><mn>9</mn></mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math>
<mtable>
The <mtable>
is laid out as an
inline-table
and sets
displaystyle
to false
. The
user agent stylesheet must contain
the following rules in order to implement these properties:
mtable {
display: inline-table;
math-style: compact;
}
The mtable
element is as a CSS
table
and the
min-content inline size, max-content inline size,
inline size, block size,
first baseline set and last baseline set
sets are determined
accordingly.
The center of the table is aligned with the math axis.
<mtr>
The <mtr>
is laid out as
table-row
. The
user agent stylesheet must contain
the following rules in order to implement that behavior:
mtr {
display: table-row;
}
The <mtr>
accepts the attributes described
in § 2.1.3 Global Attributes.
<mtd>
The <mtd>
is laid out as
a table-cell
with content centered in the cell and
a default padding. The
user agent stylesheet must contain
the following rules:
mtd {
display: table-cell;
text-align: center;
padding: 0.5ex 0.4em;
}
The <mtd>
accepts the attributes described
in § 2.1.3 Global Attributes as well as the following attributes:
The columnspan
(respectively
rowspan
) attribute has the same
syntax and semantic as the
<colspan>
(respectively
<rowspan>
)
attribute on the <td>
element from [HTML].
Historically, the
<maction>
element provides a mechanism
for binding actions to expressions.
The <maction>
element accepts the attributes described
in § 2.1.3 Global Attributes as well as the following
attributes:
This specification does not define any observable behavior that is specific to the actiontype and selection attributes.
The following example, shows the "toggle" action type from [MathML3] where the renderer alternately displays the selected subexpression, starting from "one third" and cycling through them when there is a click on the selected subexpression ("one quarter", "one half", "one third", etc). This is not part of MathML Core but can be implemented using JavaScript and CSS polyfills. The default behavior is just to render the first child.
<math>
<maction actiontype="toggle" selection="2">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</maction>
</math>
The layout algorithm of the <maction>
element
the same as the <mrow>
element.
The user agent stylesheet
must contain the following rules in order to hide all but
its first child element,
which is the default behavior for the legacy actiontype
values:
maction > :not(:first-child) {
display: none;
}
<maction>
is implemented for compatibility with full MathML. Authors whose only target is MathML Core are encouraged to use other HTML, CSS and JavaScript mechanisms to implement custom actions. They may
rely on maction attributes defined in [MathML3].
The
<semantics>
element is the container element that associates
annotations with a MathML expression. Typically, the
<semantics>
element has as its first child element
a MathML expression to be annotated while subsequent child elements
represent
text annotations within an <annotation>
element, or more complex markup annotations within
an <annotation-xml>
element.
The following example, shows how the fraction "one half" can be annotated with a textual annotation (LaTeX) or an XML annotation (content MathML). These annotations are not intended to be rendered by the user agent.
<math>
<semantics>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<annotation encoding="application/x-tex">\frac{1}{2}</annotation>
<annotation-xml encoding="application/mathml-content+xml">
<apply>
<divide/>
<cn>1</cn>
<cn>2</cn>
</apply>
</annotation-xml>
</semantics>
</math>
The <semantics>
element accepts the attributes
described in § 2.1.3 Global Attributes. Its layout algorithm
is the same as the
element.
The user agent stylesheet
must contain the following rule in order to only render the annotated
MathML expression:
<mrow>
semantics > :not(:first-child) {
display: none;
}
The <annotation-xml>
and
<annotation>
element accepts the attributes
described in § 2.1.3 Global Attributes as well as the
following attribute:
This specification does not define any observable behavior that is specific to the encoding attribute.
The layout algorithm of the <annotation-xml>
and <annotation>
element is the same as the
element.
<mtext>
/* Hide the annotated child. */
semantics > :first-child { display: none; }
/* Show all text annotations. */
semantics > annotation { display: inline; }
/* Show all HTML annotations. */
semantics > annotation-xml[encoding="text/html" i],
semantics > annotation-xml[encoding="application/xhtml+xml" i] {
display: inline-block;
}
display: block math
and display: inline math
valueThe display
property
from CSS Display Module Level 3
is extended with a new inner display type:
<display> = <display-inside-old> | math
For elements that are not MathML elements, if the specified
value of display
is inline math
or
block math
then the computed value is
block flow
and inline flow
respectively.
For the
element
the computed value is <mtable>
block table
and
inline table
respectively.
For the
element, the computed value
is <mtr>
table-row
.
For the
element, the computed value
is <mtd>
table-cell
.
MathML elements with a
computed display
value equal to
block math
or inline math
control box generation and layout according to their tag name, as
described in the relevant sections.
Unknown MathML elements
behave the same as the
element.
<mrow>
display: block math
and
display: inline math
values provide a default
layout for MathML elements while at the same time allowing
to override it with either native display values or
custom values.
This allows authors or polyfills to define their own custom notations
to tweak or extend MathML Core.
In the following example, the default layout of the
MathML <mrow>
element is overriden to render its
content as a grid.
<math>
<msup>
<mrow>
<mo symmetric="false">[</mo>
<mrow style="display: block; width: 4.5em;">
<mrow style="display: grid;
grid-template-columns: 1.5em 1.5em 1.5em;
grid-template-rows: 1.5em 1.5em;
justify-items: center;
align-items: center;">
<mn>12</mn>
<mn>34</mn>
<mn>56</mn>
<mn>7</mn>
<mn>8</mn>
<mn>9</mn>
</mrow>
</mrow>
<mo symmetric="false">]</mo>
</mrow>
<mi>α</mi>
</msup>
</math>
text-transform
valuesThe text-transform
property
from CSS Text Module Level 3
is extended with new values:
<text-transform> = <text-transform-old> | math-auto | math-bold | math-italic | math-bold-italic | math-double-struck | math-bold-fraktur | math-script | math-bold-script | math-fraktur | math-sans-serif | math-bold-sans-serif | math-sans-serif-italic | math-sans-serif-bold-italic | math-monospace | math-initial | math-tailed | math-looped | math-stretched
If the specified value of text-transform is math-auto
and the inherited value is not none
then the
computed value is the inherited value.
On text nodes containing a unique character, math-auto
has
the same effect as math-italic
, otherwise it has no effects.
For the
math-bold
,
math-italic
,
math-bold-italic
,
math-double-struck
,
math-bold-fraktur
,
math-script
,
math-bold-script
,
math-fraktur
,
math-sans-serif
,
math-bold-sans-serif
,
math-sans-serif-italic
,
math-sans-serif-bold-italic
,
math-monospace
,
math-initial
,
math-tailed
,
math-looped
and
math-stretched
values, the transformed text is
obtained by performing conversion of each character according to
the corresponding
bold,
italic,
bold-italic,
double-struck,
bold-fraktur,
script,
bold-script,
fraktur,
sans-serif,
bold-sans-serif,
sans-serif-italic,
sans-serif-bold-italic,
monospace,
initial,
tailed,
looped,
stretched tables.
User agents may decide to rely on italic, bold and bold-italic
font-level properties when available fonts lack the proper glyphs to
perform math-auto
, math-italic
,
math-bold
, math-bold-italic
character-level
transforms.
The following example shows a mathematical formula where "exp" is rendered with normal variant, "A" with bold variant, "gl" with fraktur variant, "n" using italic variant and and "R" using double-struck variant.
Values other than math-auto
are intended to infer
specific context-dependent mathematical meaning.
In the previous example, one can guess that the author
decided to use the convention of bold variables for
matrices, fraktur variables for Lie algebras and double-struck
variables for set of numbers. Although the corresponding Unicode
characters could have been used directly in these cases, it may
be helpful for authoring tools or polyfills to support these
transformations via the text-transform
property.
A common style convention is to render
identifiers with multiple letters (e.g. the function name "exp")
with normal style and identifiers with a single letter
(e.g. the variable "n") with italic style. The
math-auto
property is intended to implement this
default behavior, which can be overriden by authors if necessary.
Note that mathematical fonts are designed with special kind
of italic glyphs located at the Unicode positions of
§ C.13 italic
mappings, which differ from the shaping
obtained via italic font style. Compare this
mathematical formula
rendered with the Latin Modern Math font using
font-style: italic
(left) and
text-transform: math-auto
(right):
math-style
propertyName: |
math-style
|
---|---|
Value: | normal | compact |
Initial: | normal |
Applies to: | All elements |
Inherited: | yes |
Percentages: | n/a |
Media: | visual |
Computed value: | specified keyword |
Canonical order: | n/a |
Animation type: | not animatable |
When math-style
is compact
,
the math layout on descendants try to minimize the
logical height by
applying the following rules:
font-size
is scaled down when
its specified value is math
and
the computed value of math-depth
is
auto-add
(default for <mfrac>
)
as described in § 4.5 New value math-depth
property and font-size: math
value.largeop
property
do not follow rules from § 3.2.4.3 Layout of operators
to make them bigger.movablelimits
property are actually drawn as sub/super
scripts as described in § 3.4.2.1 Children of <munder>
,
<mover>
, <munderover>
.The following example shows a
mathematical formula renderered with
its
root styled with
<math>
math-style: compact
(left) and
math-style: normal
(right).
In the former case, the font-size is automatically scaled down
within the fractions and the summation limits are rendered as
subscript and superscript of the ∑. In the latter case, the ∑ is
drawn bigger than normal text and
vertical gaps within fractions (even relative to current
font-size) is larger.
These two math-style
values typically correspond to
mathematical expressions in inline and display
mode respectively [TeXBook].
A mathematical formula in display mode
may automatically switch to inline mode within some subformulas
(e.g. scripts, matrix elements, numerators and denominators, etc)
and it is sometimes desirable to override this default behavior.
The math-style
property allows to easily implement these
features for MathML in the
User Agent Stylesheet
and with the displaystyle
attribute ; and also exposes
them to polyfills.
math-shift
propertyName: |
math-shift
|
---|---|
Value: | normal | compact |
Initial: | normal |
Applies to: | All elements |
Inherited: | yes |
Percentages: | n/a |
Media: | visual |
Computed value: | specified keyword |
Canonical order: | n/a |
Animation type: | not animatable |
If the value of math-shift
is compact
, the math layout on descendants will use the
superscriptShiftUpCramped parameter to place superscript.
If the value of math-shift
is normal
, the math
will use the superscriptShiftUp parameter instead.
This property is used for positioning superscript during the layout
of MathML scripted elements.
See § § 3.4.1 Subscripts and Superscripts <msub>
, <msup>
, <msubsup>
§ 3.4.3 Prescripts and Tensor Indices <mmultiscripts>
and
§ 3.4.2 Underscripts and Overscripts <munder>
, <mover>
, <munderover>
.
In the following example, the two "x squared" are rendered with
compact math-style
and the same font-size
.
However, the one within the square root is rendered with
compact math-shift
while
the other one is rendered with
normal math-shift
, leading
to subtle different shift of the superscript "2".
Per [TeXBook], a
mathematical formula uses normal style by default but may
switch to compact style ("cramped" in TeX's terminology)
within some subformulas
(e.g. radicals, fraction denominators, etc).
The math-shift
property allows to easily
implement these rules for MathML in the
User Agent Stylesheet.
Page authors or developers of polyfills may also benefit from
having access to this property to tweak or refine the default
implementation.
math-depth
property and font-size: math
valueThe font-size
property
from CSS Fonts Module Level 4
is extended with a new value math
value, indicating that
special mathematical scaling rules must be applied when determining
the computed value of the font-size
property:
<font-size> = <font-size-old> | math
A new math-depth
property is introduced to describe a notion
of "depth" for each element of a mathematical formula, with respect to
the top-level container of that formula. Concretely, this is used to
determine the computed value of the font-size
property when its specified value is math
.
Name: |
math-depth
|
---|---|
Value: | auto-add | add(<integer>) | <integer> |
Initial: | 0 |
Applies to: | All elements |
Inherited: | yes |
Percentages: | n/a |
Media: | visual |
Computed value: | an integer, see below |
Canonical order: | n/a |
Animation type: | not animatable |
The computed value of the math-depth
value is
determined as follows:
math-depth
is
auto-add
and
the inherited value of math-style
is compact
then the computed value of
math-depth
of the element is its inherited value plus one.
math-depth
is of
the form add(<integer>)
then the computed value
of math-depth
of the element is its inherited value plus
the specified integer.
math-depth
is of the form
<integer>
then the computed value
of math-depth
of the element is the specified integer.
math-depth
of the element is the inherited one.
If the specified value font-size
is math
then the
computed value of
font-size
is obtained by multiplying the inherited value of
font-size
by a nonzero scale factor calculated by the
following procedure:
math-depth
value,
B the computed math-depth
value,
C be 0.71 and S be 1.0InvertScaleFactor
to true.InvertScaleFactor
to false.InvertScaleFactor
is false and 1/S otherwise.The following example shows a mathematical formula
with normal math-style
rendered with the Latin Modern Math font.
When entering subexpressions like scripts or fractions,
the font-size is automatically scaled down according to the
values of MATH table contained in that font.
Note that font-size is scaled down when
entering the superscripts but even faster when entering a
root's prescript. Also it is scaled down when entering the inner
fraction but not when entering the outer one, due to automatic
change of math-style
in fractions.
These rules from [TeXBook] are subtle and it's worth having a
separate math-depth
mechanism to express and
handle them. They can be implemented in MathML using the
User Agent Stylesheet.
Page authors or developers of polyfills may also benefit from
having access to this property to tweak or refine the default
implementation. In particular, the scriptlevel
attribute
from MathML provides a way to perform math-depth
changes.
MATH
table
This chapter describes features provided by MATH
table
of an OpenType font [OPEN-FONT-FORMAT]. Throughout this chapter,
a C-like notation
Table.Subtable1[index].Subtable2.Parameter
is used to
denote OpenType parameters.
Such parameters may not be available (e.g. if the font lack one of the
subtable, has an invalid offset, etc) and so fallback options are
provided.
OpenType values expressed in design units (perhaps indirectly via a
MathValueRecord
entry) are scaled to appropriate values
for layout purpose, taking into account
head.unitsPerEm
, CSS
or zoom level.
font-size
MathConstants
)These are global layout constants for the first available font:
post.underlineThickness
or
Default fallback constant if the constant is not available.
MATH.MathConstants.scriptPercentScaleDown / 100
or
0.71 if MATH.MathConstants.scriptPercentScaleDown
is
null or not available.
MATH.MathConstants.scriptScriptPercentScaleDown / 100
or
0.5041 if
MATH.MathConstants.scriptScriptPercentScaleDown
is
null or not available.
MATH.MathConstants.displayOperatorMinHeight
or
Default fallback constant
if the constant is not available.MATH.MathConstants.axisHeight
or half
OS/2.sxHeight
if the constant is not available.MATH.MathConstants.accentBaseHeight
or OS/2.sxHeight
if the constant is not available.MATH.MathConstants.subscriptShiftDown
or OS/2.ySubscriptYOffset
if the constant is not available.MATH.MathConstants.subscriptTopMax
or ⅘ × OS/2.sxHeight
if the constant is not available.MATH.MathConstants.subscriptBaselineDropMin
or
Default fallback constant if the constant is not available.MATH.MathConstants.superscriptShiftUp
or OS/2.ySuperscriptYOffset
if the constant is not available.MATH.MathConstants.superscriptShiftUpCramped
or
Default fallback constant if the constant is not available.MATH.MathConstants.superscriptBottomMin
or ¼ × OS/2.sxHeight
if the constant is not available.MATH.MathConstants.superscriptBaselineDropMax
or
Default fallback constant if the constant is not available.MATH.MathConstants.subSuperscriptGapMin
or 4 × default rule thickness if the constant is not available.MATH.MathConstants.superscriptBottomMaxWithSubscript
or ⅘ × OS/2.sxHeight
if the constant is not available.MATH.MathConstants.spaceAfterScript
or 1/24em if the constant is not available.MATH.MathConstants.upperLimitGapMin
or
Default fallback constant if the constant is not available.MATH.MathConstants.upperLimitBaselineRiseMin
or Default fallback constant if the constant is not available.MATH.MathConstants.lowerLimitGapMin
or Default fallback constant if the constant is not available.MATH.MathConstants.lowerLimitBaselineDropMin
or Default fallback constant if the constant is not available.MATH.MathConstants.stackTopShiftUp
or Default fallback constant if the constant is not available.MATH.MathConstants.stackTopDisplayStyleShiftUp
or Default fallback constant if the constant is not available.MATH.MathConstants.stackBottomShiftDown
or Default fallback constant if the constant is not available.MATH.MathConstants.stackBottomDisplayStyleShiftDown
or Default fallback constant if the constant is not available.MATH.MathConstants.stackGapMin
or 3 × default rule thickness if the constant is not available.MATH.MathConstants.stackDisplayStyleGapMin
or 7 × default rule thickness if the constant is not available.MATH.MathConstants.stretchStackTopShiftUp
or Default fallback constant if the constant is not available.MATH.MathConstants.stretchStackBottomShiftDown
or Default fallback constant if the constant is not available.MATH.MathConstants.stretchStackGapAboveMin
or Default fallback constant if the constant is not available.MATH.MathConstants.stretchStackGapBelowMin
or Default fallback constant if the constant is not available.MATH.MathConstants.fractionNumeratorShiftUp
or Default fallback constant if the constant is not available.MATH.MathConstants.fractionNumeratorDisplayStyleShiftUp
or Default fallback constant if the constant is not available.MATH.MathConstants.fractionDenominatorShiftDown
or Default fallback constant if the constant is not available.MATH.MathConstants.fractionDenominatorDisplayStyleShiftDown
or Default fallback constant if the constant is not available.MATH.MathConstants.fractionNumeratorGapMin
or default rule thickness if the constant is not available.MATH.MathConstants.fractionNumDisplayStyleGapMin
or 3 × default rule thickness if the constant is not available.MATH.MathConstants.fractionRuleThickness
or default rule thickness if the constant is not available.MATH.MathConstants.fractionDenominatorGapMin
or default rule thickness if the constant is not available.MATH.MathConstants.fractionDenomDisplayStyleGapMin
or 3 × default rule thickness if the constant is not available.MATH.MathConstants.overbarVerticalGap
or 3 × default rule thickness if the constant is not available.MATH.MathConstants.overbarRuleThickness
or default rule thickness if the constant is not available.MATH.MathConstants.overbarExtraAscender
or default rule thickness if the constant is not available.MATH.MathConstants.underbarVerticalGap
or 3 × default rule thickness if the constant is not available.MATH.MathConstants.underbarRuleThickness
or default rule thickness if the constant is not available.MATH.MathConstants.underbarExtraDescender
or default rule thickness if the constant is not available.MATH.MathConstants.radicalVerticalGap
or 1¼ × default rule thickness if the constant is not available.MATH.MathConstants.radicalDisplayStyleVerticalGap
or default rule thickness + ¼ OS/2.sxHeight
if the constant is not available.MATH.MathConstants.radicalRuleThickness
or default rule thickness if the constant is not available.MATH.MathConstants.radicalExtraAscender
or default rule thickness if the constant is not available.MATH.MathConstants.radicalKernBeforeDegree
or 5/18em if the constant is not available.MATH.MathConstants.radicalKernAfterDegree
or −10/18em if the constant is not available.MATH.MathConstants.radicalDegreeBottomRaisePercent / 100.0
or 0.6 if the constant is not available.MathGlyphInfo
)These are per-glyph tables for the first available font:
MATH.MathGlyphInfo.MathItalicsCorrectionInfo
of italics correction values. Use the corresponding value in
MATH.MathGlyphInfo.MathItalicsCorrectionInfo.italicsCorrection
if there is one for the requested glyph or
or 0
otherwise.
MATH.MathGlyphInfo.MathTopAccentAttachment
of positioning top math accents along the inline axis.
Use the corresponding value in
MATH.MathGlyphInfo.MathTopAccentAttachment.topAccentAttachment
if there is one for the requested glyph or
or half the advance width of the glyph otherwise.
MathVariants
)
This section describes how to handle stretchy glyphs of arbitrary
size using the MATH.MathVariants
table.
GlyphAssembly
tableThis section is based on [OPEN-TYPE-MATH-IN-HARFBUZZ]. For convenience, the following definitions are used:
MATH.MathVariant.minConnectorOverlap
.
GlyphPartRecord
is an extender
if and only if
GlyphPartRecord.partFlags
has the
fExtender
flag set.
GlyphAssembly
is horizontal
if it is obtained from
MathVariant.horizGlyphConstructionOffsets
.
Otherwise it is vertical (and obtained from
MathVariant.vertGlyphConstructionOffsets
).
GlyphAssembly
table,
NExt (respectively
NNonExt) is the number of extenders
(respectively non-extenders) in
GlyphAssembly.partRecords
.
GlyphAssembly
table,
SExt (respectively
SNonExt) is the sum of
GlyphPartRecord.fullAdvance
for all extenders (respectively non-extenders) in
GlyphAssembly.partRecords
.
User agents must treat the GlyphAssembly
as invalid
if the following conditions are not satisfied:
GlyphPartRecord
in GlyphAssembly.partRecords
,
the values of
GlyphPartRecord.startConnectorLength
and
GlyphPartRecord.endConnectorLength
must be at least omin.
Otherwise, it is not possible to satisfy the condition of
MathVariant.minConnectorOverlap
.
In this specification, a glyph assembly is built by repeating each extender r times and using the same overlap value o between each glyph. The number of glyphs in such an assembly is AssemblyGlyphCount(r) = NNonExt + r NExt while the stretch size is AssembySize(o, r) = SNonExt + r SExt − o (AssemblyGlyphCount(r) − 1).
rmin is the minimal number of repetitions needed to obtain an assembly of size at least T i.e. the minimal r such that AssembySize(omin, r)) ≥ T. It is defined as the maximum between 0 and the ceiling of ((T − SNonExt + omin (NNonExt − 1)) / SExt,NonOverlapping).
omax is the maximum overlap possible to build an assembly of size at least T by repeating each extender rmin times. If AssemblyGlyphCount(rmin) ≤ 1, then the actual overlap value is irrelevant. Otherwise, omax is defined to be the minimum of:
GlyphPartRecord.startConnectorLength
for all
the entries in
GlyphAssembly.partRecords
, excluding the
last one if it is not an extender.
GlyphPartRecord.endConnectorLength
for all
the entries in
GlyphAssembly.partRecords
, excluding the
first one if it is not an extender.
The glyph assembly stretch size for a target size T is AssembySize(omax, rmin).
The glyph assembly width, glyph assembly ascent and glyph assembly descent are defined as follows:
GlyphAssembly
is vertical,
the width is the maximum advance width of the glyphs of id
GlyphPartRecord.glyphID
for all the
GlyphPartRecord
in
GlyphAssembly.partRecords
,
the ascent is the
glyph assembly stretch size
for a given target size T
and the descent is 0.
GlyphAssembly
is horizontal,
the width is glyph assembly stretch size
for a given target size T
while
the ascent (respectively descent) is the
the maximum ascent (respectively descent) of the glyphs of id
GlyphPartRecord.glyphID
for all the
GlyphPartRecord
in
GlyphAssembly.partRecords
.
The glyph assembly height is the sum of the glyph assembly ascent and glyph assembly descent.
T
.
The shaping of the glyph assembly is performed with the following algorithm:
(x, y)
to (0, 0)
,
RepetitionCounter
to 0 and
PartIndex
to -1.
RepetitionCounter
is 0, then
PartIndex
.PartIndex
is
GlyphAssembly.partCount
then stop.Part
to
GlyphAssembly.partRecords[PartIndex]
.
Set RepetitionCounter
to
rmin if
Part
is an extender and to 1 otherwise.
Part.glyphID
so that its (left, baseline) coordinates
are at position (x, y)
.
Set x
to
x + Part.fullAdvance −
omax
Part.glyphID
so that its (left, bottom) coordinates
are at position (x, y)
.
Set y
to
y − Part.fullAdvance +
omax
RepetitionCounter
.The preferred inline size of a glyph stretched along the block axis is calculated using the following algorithm:
S
to the glyph's advance width.
MathGlyphConstruction
table
in the MathVariants.vertGlyphConstructionOffsets
table for the given glyph:
MathGlyphVariantRecord
in
MathGlyphConstruction.mathGlyphVariantRecord
,
ensure that S
is at least
the advance width of the glyph of id
MathGlyphVariantRecord.variantGlyph
.
GlyphAssembly
subtable,
then ensure
that S
is at least the
glyph assembly width.
S
.
The algorithm to shape a stretchy glyph to inline
(respectively block) dimension T
is the following:
MathGlyphConstruction
table
in the MathVariants.horizGlyphConstructionOffsets
table (respectively
MathVariants.vertGlyphConstructionOffsets
table)
for the given glyph the exit with failure.
T
then use normal shaping and bounding box for that glyph,
the MathItalicsCorrectionInfo for that glyph as
italic correction and exit with success.
MathGlyphVariantRecord
in
MathGlyphConstruction.mathGlyphVariantRecord
.
If one MathGlyphVariantRecord.advanceMeasurement
is at least T
then use
normal shaping and bounding box
for MathGlyphVariantRecord.variantGlyph
,
the MathItalicsCorrectionInfo for that glyph as
italic correction and exit with success.
GlyphAssembly
subtable
then use the bounding box given by
glyph assembly width,
glyph assembly ascent, the value
GlyphAssembly.italicsCorrection
as italic
correction, perform shaping of the glyph assembly and
exit with success.
T
, then choose last one that was tried and exit
with success.
@namespace url(http://www.w3.org/1998/Math/MathML);
/* Universal rules */
* {
font-size: math;
display: block math;
}
/* The <math> element */
math {
direction: ltr;
writing-mode: horizontal-tb;
text-indent: 0;
letter-spacing: normal;
line-height: normal;
word-spacing: normal;
font-family: math;
font-size: inherited;
font-style: normal;
font-weight: normal;
display: inline math;
math-style: compact;
math-shift: normal;
math-level: 0;
}
math[display="block" i] {
display: block math;
math-style: normal;
}
math[display="inline" i] {
display: inline math;
math-style: compact;
}
/* <mrow>-like elements */
semantics > :not(:first-child) {
display: none;
}
maction > :not(:first-child) {
display: none;
}
merror {
border: 1px solid red;
background-color: lightYellow;
}
mphantom {
visibility: hidden;
}
/* Token elements */
mi {
text-transform: math-auto;
}
/* Tables */
mtable {
display: inline-table;
math-style: compact;
}
mtr {
display: table-row;
}
mtd {
display: table-cell;
text-align: center;
padding: 0.5ex 0.4em;
}
/* Fractions */
mfrac {
padding-inline-start: 1px;
padding-inline-end: 1px;
}
mfrac > * {
math-depth: auto-add;
math-style: compact;
}
mfrac > :nth-child(2) {
math-shift: compact;
}
/* Other rules for scriptlevel, displaystyle and math-shift */
mroot > :not(:first-child) {
math-depth: add(2);
math-style: compact;
}
mroot, msqrt {
math-shift: compact;
}
msub > :not(:first-child),
msup > :not(:first-child),
msubsup > :not(:first-child),
mmultiscripts > :not(:first-child),
munder > :not(:first-child),
mover > :not(:first-child),
munderover > :not(:first-child) {
math-depth: add(1);
math-style: compact;
}
munder[accentunder="true" i] > :nth-child(2),
mover[accent="true" i] > :nth-child(2),
munderover[accentunder="true" i] > :nth-child(2),
munderover[accent="true" i] > :nth-child(3) {
font-size: inherit;
}
msub > :nth-child(2),
msubsup > :nth-child(2),
mmultiscripts > :nth-child(even),
mmultiscripts > mprescripts ~ :nth-child(odd),
mover[accent="true" i] > :first-child,
munderover[accent="true" i] > :first-child {
math-shift: compact;
}
mmultiscripts > mprescripts ~ :nth-child(even) {
math-shift: inherit;
}
The following dictionary for default values of
§ 3.2.4.2 Dictionary-based attributes of operators
when they are not specified via explicit attributes or equal to
the generic default values. Please refer to
§ 3.2.4.2 Dictionary-based attributes for explanation about
how to use this dictionary and how to
determine the values Content
and
Form
indexing it.
Tables below are suitable for computer manipulation,
see § B.3 Operator Dictionary (human-readable) for an alternative
presentation.
This compact form removes about 800 entries from the original
operator dictionary that actually
correspond to default values.
They are not necessary since they are handled by the
fallback case of
§ 3.2.4.2 Dictionary-based attributes anyway. For other
(Content
, Form
)
key, the search is done as follows:
stretchy
, symmetric
largeop
, movablelimits
to false
.
Content
as an UTF-16 string does not have length
or 1 or 2 then exit with NotFound
status.
Content
is a single character in the
range U+0320–U+03FF
then exit with NotFound
status. Otherwise,
if it has two characters:
Content
is the surrogate pairs corresponding
to
U+1EEF0 ARABIC MATHEMATICAL OPERATOR MEEM WITH HAH WITH TATWEEL
or U+1EEF1 ARABIC MATHEMATICAL OPERATOR HAH WITH DAL and
Form
is postfix,
then set properties according to category I of
Figure 26
and move to the last step.Content
with the first character.Content
it is listed in
Operators_2_ascii_chars
then
replace Content
with the Unicode character
"U+0320 plus the index of Content
in
Operators_2_ascii_chars
".
NotFound
status.Content
, Form
) from
Figure 25 and
either exit with NotFound
status or and move to
the next point. More precisely, this can be done as follows:
Content
, Form
)
according to Figure 25.
If a result is found then set the properties according to
Figure 26.
Otherwise exit with NotFound
status.
Key
to Content
if it is in
range U+0000–U+03FF ; or to Content
− 0x1C00
if it is in range U+2000–U+2BFF. Otherwise, exit with
NotFound
status.
Key
is at most 0x0FFF.
Key
according to whether Form
is infix
, prefix
,
postfix
respectively.
Key
is at most 0x2FFF.
Entry
in table
Figure 27
such Entry
% 0x4000 is equal to
Key
. Either exit with
NotFound
status or
set the properties corresponding to the category with
encoding Entry
/ 0x1000 in
Figure 26.
lspace
, rspace
,
stretchy
, symmetric
largeop
,
movablelimits
)
value.
Special Table | Entries |
---|---|
Operators_2_ascii_chars | 20 entries (2-characters ASCII strings): '!!', '!=', '&&', '**', '*=', '++', '+=', '--', '-=', '->', '//', '/=', ':=', '<=', '<>', '==', '>=', '||', '⧏̸', '⧐̸', |
Operators_fence | 61 entries (16 Unicode ranges): [U+0028–U+0029], {U+005B}, {U+005D}, [U+007B–U+007D], {U+0331}, {U+2016}, [U+2018–U+2019], [U+201C–U+201D], [U+2308–U+230B], [U+2329–U+232A], [U+2772–U+2773], [U+27E6–U+27EF], {U+2980}, [U+2983–U+2999], [U+29D8–U+29DB], [U+29FC–U+29FD], |
Operators_separator | 3 entries: U+002C, U+003B, U+2063, |
(Content, Form) keys | Category |
---|---|
313 entries (35 Unicode ranges) in infix form: [U+2190–U+2195], [U+219A–U+21AE], [U+21B0–U+21B5], {U+21B9}, [U+21BC–U+21D5], [U+21DA–U+21F0], [U+21F3–U+21FF], {U+2794}, {U+2799}, [U+279B–U+27A1], [U+27A5–U+27A6], [U+27A8–U+27AF], {U+27B1}, {U+27B3}, {U+27B5}, {U+27B8}, [U+27BA–U+27BE], [U+27F0–U+27F1], [U+27F4–U+27FF], [U+2900–U+2920], [U+2934–U+2937], [U+2942–U+2975], [U+297C–U+297F], [U+2B04–U+2B07], [U+2B0C–U+2B11], [U+2B30–U+2B3E], [U+2B40–U+2B4C], [U+2B60–U+2B65], [U+2B6A–U+2B6D], [U+2B70–U+2B73], [U+2B7A–U+2B7D], [U+2B80–U+2B87], {U+2B95}, [U+2BA0–U+2BAF], {U+2BB8}, | A |
109 entries (32 Unicode ranges) in infix form: {U+002B}, {U+002D}, {U+002F}, {U+00B1}, {U+00F7}, {U+0322}, {U+2044}, [U+2212–U+2216], [U+2227–U+222A], {U+2236}, {U+2238}, [U+228C–U+228E], [U+2293–U+2296], {U+2298}, [U+229D–U+229F], [U+22BB–U+22BD], [U+22CE–U+22CF], [U+22D2–U+22D3], [U+2795–U+2797], {U+29B8}, {U+29BC}, [U+29C4–U+29C5], [U+29F5–U+29FB], [U+2A1F–U+2A2E], [U+2A38–U+2A3A], {U+2A3E}, [U+2A40–U+2A4F], [U+2A51–U+2A63], {U+2ADB}, {U+2AF6}, {U+2AFB}, {U+2AFD}, | B |
64 entries (33 Unicode ranges) in infix form: {U+0025}, {U+002A}, {U+002E}, [U+003F–U+0040], {U+005E}, {U+00B7}, {U+00D7}, {U+0323}, {U+032E}, {U+2022}, {U+2043}, [U+2217–U+2219], {U+2240}, {U+2297}, [U+2299–U+229B], [U+22A0–U+22A1], {U+22BA}, [U+22C4–U+22C7], [U+22C9–U+22CC], [U+2305–U+2306], {U+27CB}, {U+27CD}, [U+29C6–U+29C8], [U+29D4–U+29D7], {U+29E2}, [U+2A1D–U+2A1E], [U+2A2F–U+2A37], [U+2A3B–U+2A3D], {U+2A3F}, {U+2A50}, [U+2A64–U+2A65], [U+2ADC–U+2ADD], {U+2AFE}, | C |
52 entries (22 Unicode ranges) in prefix form: {U+0021}, {U+002B}, {U+002D}, {U+00AC}, {U+00B1}, {U+0331}, {U+2018}, {U+201C}, [U+2200–U+2201], [U+2203–U+2204], {U+2207}, [U+2212–U+2213], [U+221F–U+2222], [U+2234–U+2235], {U+223C}, [U+22BE–U+22BF], {U+2310}, {U+2319}, [U+2795–U+2796], {U+27C0}, [U+299B–U+29AF], [U+2AEC–U+2AED], | D |
40 entries (21 Unicode ranges) in postfix form: [U+0021–U+0022], [U+0025–U+0027], {U+0060}, {U+00A8}, {U+00B0}, [U+00B2–U+00B4], [U+00B8–U+00B9], [U+02CA–U+02CB], [U+02D8–U+02DA], {U+02DD}, {U+0311}, {U+0320}, {U+0325}, {U+0327}, {U+0331}, [U+2019–U+201B], [U+201D–U+201F], [U+2032–U+2037], {U+2057}, [U+20DB–U+20DC], {U+23CD}, | E |
30 entries in prefix form: U+0028, U+005B, U+007B, U+007C, U+2016, U+2308, U+230A, U+2329, U+2772, U+27E6, U+27E8, U+27EA, U+27EC, U+27EE, U+2980, U+2983, U+2985, U+2987, U+2989, U+298B, U+298D, U+298F, U+2991, U+2993, U+2995, U+2997, U+2999, U+29D8, U+29DA, U+29FC, | F |
30 entries in postfix form: U+0029, U+005D, U+007C, U+007D, U+2016, U+2309, U+230B, U+232A, U+2773, U+27E7, U+27E9, U+27EB, U+27ED, U+27EF, U+2980, U+2984, U+2986, U+2988, U+298A, U+298C, U+298E, U+2990, U+2992, U+2994, U+2996, U+2998, U+2999, U+29D9, U+29DB, U+29FD, | G |
27 entries (2 Unicode ranges) in prefix form: [U+222B–U+2233], [U+2A0B–U+2A1C], | H |
22 entries (13 Unicode ranges) in postfix form: [U+005E–U+005F], {U+007E}, {U+00AF}, [U+02C6–U+02C7], {U+02C9}, {U+02CD}, {U+02DC}, {U+02F7}, {U+0302}, {U+203E}, [U+2322–U+2323], [U+23B4–U+23B5], [U+23DC–U+23E1], | I |
22 entries (6 Unicode ranges) in prefix form: [U+220F–U+2211], [U+22C0–U+22C3], [U+2A00–U+2A0A], [U+2A1D–U+2A1E], {U+2AFC}, {U+2AFF}, | J |
7 entries (4 Unicode ranges) in infix form: {U+005C}, {U+005F}, [U+2061–U+2064], {U+2206}, | K |
6 entries (3 Unicode ranges) in prefix form: [U+2145–U+2146], {U+2202}, [U+221A–U+221C], | L |
4 entries in infix form: U+002C, U+003A, U+003B, U+2982, | M |
Category | Form | Encoding | rspace | lspace | properties |
---|---|---|---|---|---|
A | infix | 0x0 | 0.2777777777777778em | 0.2777777777777778em | stretchy |
B | infix | 0x4 | 0.2222222222222222em | 0.2222222222222222em | N/A |
C | infix | 0x8 | 0.16666666666666666em | 0.16666666666666666em | N/A |
D | prefix | 0x1 | 0 | 0 | N/A |
E | postfix | 0x2 | 0 | 0 | N/A |
F | prefix | 0x5 | 0 | 0 | stretchy symmetric |
G | postfix | 0x6 | 0 | 0 | stretchy symmetric |
H | prefix | 0x9 | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
I | postfix | 0xA | 0 | 0 | stretchy |
J | prefix | 0xD | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
K | infix | 0xC | 0 | 0 | N/A |
L | prefix | N/A | 0.16666666666666666em | 0 | N/A |
M | infix | N/A | 0 | 0.16666666666666666em | N/A |
When encoded as ranges, one can perform a binary search by looking for the range start, followed by an extra check on the range length. Since log is concave, it is worse to do one binary search on each large subtable of Figure 25 than one binary search on the whole table of Figure 27. One can see that there are several contiguous Unicode blocks, so encoding tables as ranges allow to get almost 8 bits per entry.
Alternatively, it is possible to use a perfect hash function to implement table lookup in constant time [gperf] [CMPH]. This would instead take 16 bits per entry, plus 16 bits per extra empty entry (for non-minimal perfect hash function) as well as extra data to store the hash function parameters. For minimal perfect hash function, the theorical lower bound for storing these parameters is 1.44bits/entry and existing algorithms range from close to that limit up to 4bits/entry.
The default stretch axis for all characters is block. However, the stretch axis for the following characters is inline:
U+003D,
U+005E,
U+005F,
U+007E,
U+00AF,
U+02C6,
U+02C7,
U+02C9,
U+02CD,
U+02DC,
U+02F7,
U+0302,
U+0332,
U+203E,
U+20D0,
U+20D1,
U+20D6,
U+20D7,
U+20E1,
U+2190,
U+2192,
U+2194,
U+2198,
U+2199,
U+219C,
U+219D,
U+219E,
U+21A0,
U+21A2,
U+21A3,
U+21A4,
U+21A6,
U+21A9,
U+21AA,
U+21AB,
U+21AC,
U+21AD,
U+21B4,
U+21B9,
U+21BC,
U+21BD,
U+21C0,
U+21C1,
U+21C4,
U+21C6,
U+21C7,
U+21C9,
U+21CB,
U+21CC,
U+21D0,
U+21D2,
U+21D4,
U+21DA,
U+21DB,
U+21DC,
U+21DD,
U+21E0,
U+21E2,
U+21E4,
U+21E5,
U+21E6,
U+21E8,
U+21F0,
U+21F6,
U+21FD,
U+21FE,
U+21FF,
U+23B4,
U+23B5,
U+23DC,
U+23DD,
U+23DE,
U+23DF,
U+23E0,
U+23E1,
U+2500,
U+27F5,
U+27F6,
U+27F7,
U+27F8,
U+27F9,
U+27FA,
U+27FB,
U+27FC,
U+27FD,
U+27FE,
U+27FF,
U+290C,
U+290D,
U+290E,
U+290F,
U+2910,
U+294E,
U+2950,
U+2952,
U+2953,
U+2956,
U+2957,
U+295A,
U+295B,
U+295E,
U+295F,
U+2B45,
U+2B46,
U+FE35,
U+FE36,
U+FE37,
U+FE38,
U+1EEF0,
U+1EEF1
This section is non-normative.
The following dictionary provides a human-readable version
of § B.1 Operator Dictionary. Please refer to
§ 3.2.4.2 Dictionary-based attributes for explanation about
how to use this dictionary and how to
determine the values Content
and Form
indexing together
the dictionary.
The values for rspace
and lspace
are indicated
in the corresponding columns.
The values of
,
stretchy
,
symmetric
,
largeop
,
are movablelimits
true
if they are listed in the "properties" column.
Content | form | rspace | lspace | properties |
---|---|---|---|---|
< U+003C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
= U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
> U+003E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
| U+007C | infix | 0.2777777777777778em | 0.2777777777777778em | fence |
↖ U+2196 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↗ U+2197 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↘ U+2198 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↙ U+2199 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↯ U+21AF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↶ U+21B6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↷ U+21B7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↸ U+21B8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↺ U+21BA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
↻ U+21BB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇖ U+21D6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇗ U+21D7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇘ U+21D8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇙ U+21D9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇱ U+21F1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⇲ U+21F2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∈ U+2208 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∉ U+2209 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∊ U+220A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∋ U+220B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∌ U+220C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∍ U+220D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∝ U+221D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∣ U+2223 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∤ U+2224 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∥ U+2225 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∦ U+2226 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∴ U+2234 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∵ U+2235 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∷ U+2237 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∹ U+2239 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∺ U+223A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∻ U+223B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∼ U+223C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∽ U+223D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
∾ U+223E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≁ U+2241 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≂ U+2242 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≃ U+2243 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≄ U+2244 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≅ U+2245 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≆ U+2246 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≇ U+2247 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≈ U+2248 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≉ U+2249 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≊ U+224A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≋ U+224B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≌ U+224C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≍ U+224D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≎ U+224E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≏ U+224F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≐ U+2250 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≑ U+2251 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≒ U+2252 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≓ U+2253 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≔ U+2254 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≕ U+2255 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≖ U+2256 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≗ U+2257 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≘ U+2258 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≙ U+2259 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≚ U+225A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≛ U+225B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≜ U+225C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≝ U+225D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≞ U+225E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≟ U+225F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≠ U+2260 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≡ U+2261 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≢ U+2262 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≣ U+2263 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≤ U+2264 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≥ U+2265 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≦ U+2266 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≧ U+2267 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≨ U+2268 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≩ U+2269 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≪ U+226A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≫ U+226B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≬ U+226C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≭ U+226D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≮ U+226E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≯ U+226F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≰ U+2270 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≱ U+2271 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≲ U+2272 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≳ U+2273 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≴ U+2274 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≵ U+2275 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≶ U+2276 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≷ U+2277 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≸ U+2278 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≹ U+2279 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≺ U+227A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≻ U+227B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≼ U+227C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≽ U+227D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≾ U+227E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
≿ U+227F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊀ U+2280 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊁ U+2281 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊂ U+2282 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊃ U+2283 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊄ U+2284 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊅ U+2285 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊆ U+2286 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊇ U+2287 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊈ U+2288 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊉ U+2289 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊊ U+228A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊋ U+228B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊏ U+228F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊐ U+2290 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊑ U+2291 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊒ U+2292 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊜ U+229C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊢ U+22A2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊣ U+22A3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊦ U+22A6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊧ U+22A7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊨ U+22A8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊩ U+22A9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊪ U+22AA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊫ U+22AB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊬ U+22AC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊭ U+22AD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊮ U+22AE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊯ U+22AF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊰ U+22B0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊱ U+22B1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊲ U+22B2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊳ U+22B3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊴ U+22B4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊵ U+22B5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊶ U+22B6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊷ U+22B7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⊸ U+22B8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋈ U+22C8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋍ U+22CD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋐ U+22D0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋑ U+22D1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋔ U+22D4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋕ U+22D5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋖ U+22D6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋗ U+22D7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋘ U+22D8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋙ U+22D9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋚ U+22DA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋛ U+22DB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋜ U+22DC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋝ U+22DD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋞ U+22DE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋟ U+22DF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋠ U+22E0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋡ U+22E1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋢ U+22E2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋣ U+22E3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋤ U+22E4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋥ U+22E5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋦ U+22E6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋧ U+22E7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋨ U+22E8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋩ U+22E9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋪ U+22EA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋫ U+22EB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋬ U+22EC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋭ U+22ED | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋲ U+22F2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋳ U+22F3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋴ U+22F4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋵ U+22F5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋶ U+22F6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋷ U+22F7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋸ U+22F8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋹ U+22F9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋺ U+22FA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋻ U+22FB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋼ U+22FC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋽ U+22FD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋾ U+22FE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⋿ U+22FF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⌁ U+2301 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⍼ U+237C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⎋ U+238B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➘ U+2798 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➚ U+279A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➧ U+27A7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➲ U+27B2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➴ U+27B4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➶ U+27B6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➷ U+27B7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
➹ U+27B9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⟂ U+27C2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⟲ U+27F2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⟳ U+27F3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤡ U+2921 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤢ U+2922 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤣ U+2923 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤤ U+2924 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤥ U+2925 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤦ U+2926 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤧ U+2927 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤨ U+2928 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤩ U+2929 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤪ U+292A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤫ U+292B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤬ U+292C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤭ U+292D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤮ U+292E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤯ U+292F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤰ U+2930 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤱ U+2931 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤲ U+2932 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤳ U+2933 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤸ U+2938 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤹ U+2939 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤺ U+293A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤻ U+293B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤼ U+293C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤽ U+293D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤾ U+293E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⤿ U+293F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥀ U+2940 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥁ U+2941 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥶ U+2976 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥷ U+2977 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥸ U+2978 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥹ U+2979 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥺ U+297A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⥻ U+297B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⦁ U+2981 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⦶ U+29B6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⦷ U+29B7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⦹ U+29B9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧀ U+29C0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧁ U+29C1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧎ U+29CE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧏ U+29CF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧐ U+29D0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧑ U+29D1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧒ U+29D2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧓ U+29D3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧟ U+29DF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧡ U+29E1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧣ U+29E3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧤ U+29E4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧥ U+29E5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧦ U+29E6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⧴ U+29F4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩦ U+2A66 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩧ U+2A67 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩨ U+2A68 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩩ U+2A69 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩪ U+2A6A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩫ U+2A6B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩬ U+2A6C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩭ U+2A6D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩮ U+2A6E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩯ U+2A6F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩰ U+2A70 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩱ U+2A71 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩲ U+2A72 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩳ U+2A73 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩴ U+2A74 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩵ U+2A75 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩶ U+2A76 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩷ U+2A77 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩸ U+2A78 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩹ U+2A79 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩺ U+2A7A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩻ U+2A7B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩼ U+2A7C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩽ U+2A7D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩾ U+2A7E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⩿ U+2A7F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪀ U+2A80 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪁ U+2A81 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪂ U+2A82 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪃ U+2A83 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪄ U+2A84 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪅ U+2A85 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪆ U+2A86 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪇ U+2A87 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪈ U+2A88 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪉ U+2A89 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪊ U+2A8A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪋ U+2A8B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪌ U+2A8C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪍ U+2A8D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪎ U+2A8E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪏ U+2A8F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪐ U+2A90 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪑ U+2A91 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪒ U+2A92 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪓ U+2A93 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪔ U+2A94 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪕ U+2A95 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪖ U+2A96 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪗ U+2A97 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪘ U+2A98 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪙ U+2A99 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪚ U+2A9A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪛ U+2A9B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪜ U+2A9C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪝ U+2A9D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪞ U+2A9E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪟ U+2A9F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪠ U+2AA0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪡ U+2AA1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪢ U+2AA2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪣ U+2AA3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪤ U+2AA4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪥ U+2AA5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪦ U+2AA6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪧ U+2AA7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪨ U+2AA8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪩ U+2AA9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪪ U+2AAA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪫ U+2AAB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪬ U+2AAC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪭ U+2AAD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪮ U+2AAE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪯ U+2AAF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪰ U+2AB0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪱ U+2AB1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪲ U+2AB2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪳ U+2AB3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪴ U+2AB4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪵ U+2AB5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪶ U+2AB6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪷ U+2AB7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪸ U+2AB8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪹ U+2AB9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪺ U+2ABA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪻ U+2ABB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪼ U+2ABC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪽ U+2ABD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪾ U+2ABE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⪿ U+2ABF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫀ U+2AC0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫁ U+2AC1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫂ U+2AC2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫃ U+2AC3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫄ U+2AC4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫅ U+2AC5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫆ U+2AC6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫇ U+2AC7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫈ U+2AC8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫉ U+2AC9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫊ U+2ACA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫋ U+2ACB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫌ U+2ACC | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫍ U+2ACD | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫎ U+2ACE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫏ U+2ACF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫐ U+2AD0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫑ U+2AD1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫒ U+2AD2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫓ U+2AD3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫔ U+2AD4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫕ U+2AD5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫖ U+2AD6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫗ U+2AD7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫘ U+2AD8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫙ U+2AD9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫚ U+2ADA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫞ U+2ADE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫟ U+2ADF | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫠ U+2AE0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫡ U+2AE1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫢ U+2AE2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫣ U+2AE3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫤ U+2AE4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫥ U+2AE5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫦ U+2AE6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫧ U+2AE7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫨ U+2AE8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫩ U+2AE9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫪ U+2AEA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫫ U+2AEB | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫮ U+2AEE | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫲ U+2AF2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫳ U+2AF3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫴ U+2AF4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫵ U+2AF5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫷ U+2AF7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫸ U+2AF8 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫹ U+2AF9 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⫺ U+2AFA | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬀ U+2B00 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬁ U+2B01 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬂ U+2B02 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬃ U+2B03 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬈ U+2B08 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬉ U+2B09 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬊ U+2B0A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬋ U+2B0B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⬿ U+2B3F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭍ U+2B4D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭎ U+2B4E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭏ U+2B4F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭚ U+2B5A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭛ U+2B5B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭜ U+2B5C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭝ U+2B5D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭞ U+2B5E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭟ U+2B5F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭦ U+2B66 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭧ U+2B67 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭨ U+2B68 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭩ U+2B69 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭮ U+2B6E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭯ U+2B6F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭶ U+2B76 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭷ U+2B77 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭸ U+2B78 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⭹ U+2B79 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮈ U+2B88 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮉ U+2B89 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮊ U+2B8A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮋ U+2B8B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮌ U+2B8C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮍ U+2B8D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮎ U+2B8E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮏ U+2B8F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮔ U+2B94 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮰ U+2BB0 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮱ U+2BB1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮲ U+2BB2 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮳ U+2BB3 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮴ U+2BB4 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮵ U+2BB5 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮶ U+2BB6 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⮷ U+2BB7 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
⯑ U+2BD1 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠸 U+1F838 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠹 U+1F839 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠺 U+1F83A | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠻 U+1F83B | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠼 U+1F83C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠽 U+1F83D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠾 U+1F83E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🠿 U+1F83F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡀 U+1F840 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡁 U+1F841 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡂 U+1F842 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡃 U+1F843 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡔 U+1F854 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡕 U+1F855 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡖 U+1F856 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡗 U+1F857 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡤 U+1F864 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡥 U+1F865 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡦 U+1F866 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡧 U+1F867 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡬 U+1F86C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡭 U+1F86D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡮 U+1F86E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡯 U+1F86F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡴 U+1F874 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡵 U+1F875 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡶 U+1F876 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡷 U+1F877 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡼 U+1F87C | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡽 U+1F87D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡾 U+1F87E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🡿 U+1F87F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🢄 U+1F884 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🢅 U+1F885 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🢆 U+1F886 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
🢇 U+1F887 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String != U+0021 U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String *= U+002A U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String += U+002B U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String -= U+002D U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String -> U+002D U+003E | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String // U+002F U+002F | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String /= U+002F U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String := U+003A U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String <= U+003C U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String == U+003D U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String >= U+003E U+003D | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String || U+007C U+007C | infix | 0.2777777777777778em | 0.2777777777777778em | fence |
String ⧏̸ U+29CF U+0338 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
String ⧐̸ U+29D0 U+0338 | infix | 0.2777777777777778em | 0.2777777777777778em | N/A |
← U+2190 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↑ U+2191 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
→ U+2192 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↓ U+2193 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↔ U+2194 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↕ U+2195 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↚ U+219A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↛ U+219B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↜ U+219C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↝ U+219D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↞ U+219E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↟ U+219F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↠ U+21A0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↡ U+21A1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↢ U+21A2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↣ U+21A3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↤ U+21A4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↥ U+21A5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↦ U+21A6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↧ U+21A7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↨ U+21A8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↩ U+21A9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↪ U+21AA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↫ U+21AB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↬ U+21AC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↭ U+21AD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↮ U+21AE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↰ U+21B0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↱ U+21B1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↲ U+21B2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↳ U+21B3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↴ U+21B4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↵ U+21B5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↹ U+21B9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↼ U+21BC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↽ U+21BD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↾ U+21BE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
↿ U+21BF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇀ U+21C0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇁ U+21C1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇂ U+21C2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇃ U+21C3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇄ U+21C4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇅ U+21C5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇆ U+21C6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇇ U+21C7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇈ U+21C8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇉ U+21C9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇊ U+21CA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇋ U+21CB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇌ U+21CC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇍ U+21CD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇎ U+21CE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇏ U+21CF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇐ U+21D0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇑ U+21D1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇒ U+21D2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇓ U+21D3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇔ U+21D4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇕ U+21D5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇚ U+21DA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇛ U+21DB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇜ U+21DC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇝ U+21DD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇞ U+21DE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇟ U+21DF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇠ U+21E0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇡ U+21E1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇢ U+21E2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇣ U+21E3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇤ U+21E4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇥ U+21E5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇦ U+21E6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇧ U+21E7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇨ U+21E8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇩ U+21E9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇪ U+21EA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇫ U+21EB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇬ U+21EC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇭ U+21ED | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇮ U+21EE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇯ U+21EF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇰ U+21F0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇳ U+21F3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇴ U+21F4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇵ U+21F5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇶ U+21F6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇷ U+21F7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇸ U+21F8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇹ U+21F9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇺ U+21FA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇻ U+21FB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇼ U+21FC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇽ U+21FD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇾ U+21FE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⇿ U+21FF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➔ U+2794 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➙ U+2799 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➛ U+279B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➜ U+279C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➝ U+279D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➞ U+279E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➟ U+279F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➠ U+27A0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➡ U+27A1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➥ U+27A5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➦ U+27A6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➨ U+27A8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➩ U+27A9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➪ U+27AA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➫ U+27AB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➬ U+27AC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➭ U+27AD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➮ U+27AE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➯ U+27AF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➱ U+27B1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➳ U+27B3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➵ U+27B5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➸ U+27B8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➺ U+27BA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➻ U+27BB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➼ U+27BC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➽ U+27BD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
➾ U+27BE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟰ U+27F0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟱ U+27F1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟴ U+27F4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟵ U+27F5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟶ U+27F6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟷ U+27F7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟸ U+27F8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟹ U+27F9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟺ U+27FA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟻ U+27FB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟼ U+27FC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟽ U+27FD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟾ U+27FE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⟿ U+27FF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤀ U+2900 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤁ U+2901 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤂ U+2902 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤃ U+2903 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤄ U+2904 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤅ U+2905 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤆ U+2906 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤇ U+2907 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤈ U+2908 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤉ U+2909 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤊ U+290A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤋ U+290B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤌ U+290C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤍ U+290D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤎ U+290E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤏ U+290F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤐ U+2910 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤑ U+2911 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤒ U+2912 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤓ U+2913 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤔ U+2914 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤕ U+2915 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤖ U+2916 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤗ U+2917 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤘ U+2918 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤙ U+2919 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤚ U+291A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤛ U+291B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤜ U+291C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤝ U+291D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤞ U+291E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤟ U+291F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤠ U+2920 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤴ U+2934 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤵ U+2935 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤶ U+2936 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⤷ U+2937 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥂ U+2942 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥃ U+2943 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥄ U+2944 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥅ U+2945 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥆ U+2946 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥇ U+2947 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥈ U+2948 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥉ U+2949 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥊ U+294A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥋ U+294B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥌ U+294C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥍ U+294D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥎ U+294E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥏ U+294F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥐ U+2950 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥑ U+2951 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥒ U+2952 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥓ U+2953 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥔ U+2954 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥕ U+2955 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥖ U+2956 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥗ U+2957 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥘ U+2958 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥙ U+2959 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥚ U+295A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥛ U+295B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥜ U+295C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥝ U+295D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥞ U+295E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥟ U+295F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥠ U+2960 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥡ U+2961 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥢ U+2962 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥣ U+2963 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥤ U+2964 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥥ U+2965 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥦ U+2966 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥧ U+2967 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥨ U+2968 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥩ U+2969 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥪ U+296A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥫ U+296B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥬ U+296C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥭ U+296D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥮ U+296E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥯ U+296F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥰ U+2970 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥱ U+2971 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥲ U+2972 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥳ U+2973 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥴ U+2974 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥵ U+2975 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥼ U+297C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥽ U+297D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥾ U+297E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⥿ U+297F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬄ U+2B04 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬅ U+2B05 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬆ U+2B06 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬇ U+2B07 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬌ U+2B0C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬍ U+2B0D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬎ U+2B0E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬏ U+2B0F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬐ U+2B10 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬑ U+2B11 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬰ U+2B30 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬱ U+2B31 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬲ U+2B32 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬳ U+2B33 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬴ U+2B34 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬵ U+2B35 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬶ U+2B36 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬷ U+2B37 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬸ U+2B38 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬹ U+2B39 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬺ U+2B3A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬻ U+2B3B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬼ U+2B3C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬽ U+2B3D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⬾ U+2B3E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭀ U+2B40 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭁ U+2B41 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭂ U+2B42 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭃ U+2B43 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭄ U+2B44 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭅ U+2B45 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭆ U+2B46 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭇ U+2B47 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭈ U+2B48 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭉ U+2B49 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭊ U+2B4A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭋ U+2B4B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭌ U+2B4C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭠ U+2B60 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭡ U+2B61 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭢ U+2B62 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭣ U+2B63 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭤ U+2B64 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭥ U+2B65 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭪ U+2B6A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭫ U+2B6B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭬ U+2B6C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭭ U+2B6D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭰ U+2B70 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭱ U+2B71 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭲ U+2B72 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭳ U+2B73 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭺ U+2B7A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭻ U+2B7B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭼ U+2B7C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⭽ U+2B7D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮀ U+2B80 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮁ U+2B81 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮂ U+2B82 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮃ U+2B83 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮄ U+2B84 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮅ U+2B85 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮆ U+2B86 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮇ U+2B87 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮕ U+2B95 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮠ U+2BA0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮡ U+2BA1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮢ U+2BA2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮣ U+2BA3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮤ U+2BA4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮥ U+2BA5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮦ U+2BA6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮧ U+2BA7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮨ U+2BA8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮩ U+2BA9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮪ U+2BAA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮫ U+2BAB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮬ U+2BAC | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮭ U+2BAD | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮮ U+2BAE | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮯ U+2BAF | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
⮸ U+2BB8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠀 U+1F800 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠁 U+1F801 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠂 U+1F802 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠃 U+1F803 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠄 U+1F804 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠅 U+1F805 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠆 U+1F806 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠇 U+1F807 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠈 U+1F808 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠉 U+1F809 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠊 U+1F80A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠋 U+1F80B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠐 U+1F810 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠑 U+1F811 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠒 U+1F812 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠓 U+1F813 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠔 U+1F814 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠕 U+1F815 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠖 U+1F816 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠗 U+1F817 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠘 U+1F818 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠙 U+1F819 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠚 U+1F81A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠛 U+1F81B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠜 U+1F81C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠝 U+1F81D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠞 U+1F81E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠟 U+1F81F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠠 U+1F820 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠡 U+1F821 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠢 U+1F822 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠣 U+1F823 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠤 U+1F824 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠥 U+1F825 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠦 U+1F826 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠧 U+1F827 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠨 U+1F828 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠩 U+1F829 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠪 U+1F82A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠫 U+1F82B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠬 U+1F82C | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠭 U+1F82D | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠮 U+1F82E | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠯 U+1F82F | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠰 U+1F830 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠱 U+1F831 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠲 U+1F832 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠳 U+1F833 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠴 U+1F834 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠵 U+1F835 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠶 U+1F836 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🠷 U+1F837 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡄 U+1F844 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡅 U+1F845 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡆 U+1F846 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡇 U+1F847 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡐 U+1F850 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡑 U+1F851 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡒 U+1F852 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡓 U+1F853 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡘 U+1F858 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡙 U+1F859 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡠 U+1F860 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡡 U+1F861 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡢 U+1F862 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡣 U+1F863 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡨 U+1F868 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡩 U+1F869 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡪 U+1F86A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡫 U+1F86B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡰 U+1F870 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡱 U+1F871 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡲 U+1F872 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡳 U+1F873 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡸 U+1F878 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡹 U+1F879 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡺 U+1F87A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🡻 U+1F87B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢀 U+1F880 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢁 U+1F881 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢂 U+1F882 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢃 U+1F883 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢘 U+1F898 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢙 U+1F899 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢚 U+1F89A | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢛 U+1F89B | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢠 U+1F8A0 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢡 U+1F8A1 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢢 U+1F8A2 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢣 U+1F8A3 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢤 U+1F8A4 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢥 U+1F8A5 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢦 U+1F8A6 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢧 U+1F8A7 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢨 U+1F8A8 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢩 U+1F8A9 | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢪 U+1F8AA | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
🢫 U+1F8AB | infix | 0.2777777777777778em | 0.2777777777777778em | stretchy |
+ U+002B | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
- U+002D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
/ U+002F | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
± U+00B1 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
÷ U+00F7 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⁄ U+2044 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
− U+2212 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∓ U+2213 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∔ U+2214 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∕ U+2215 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∖ U+2216 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∧ U+2227 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∨ U+2228 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∩ U+2229 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∪ U+222A | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∶ U+2236 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
∸ U+2238 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊌ U+228C | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊍ U+228D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊎ U+228E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊓ U+2293 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊔ U+2294 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊕ U+2295 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊖ U+2296 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊘ U+2298 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊝ U+229D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊞ U+229E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊟ U+229F | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊻ U+22BB | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊼ U+22BC | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⊽ U+22BD | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⋎ U+22CE | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⋏ U+22CF | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⋒ U+22D2 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⋓ U+22D3 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
➕ U+2795 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
➖ U+2796 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
➗ U+2797 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⦸ U+29B8 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⦼ U+29BC | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧄ U+29C4 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧅ U+29C5 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧵ U+29F5 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧶ U+29F6 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧷ U+29F7 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧸ U+29F8 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧹ U+29F9 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧺ U+29FA | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⧻ U+29FB | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨟ U+2A1F | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨠ U+2A20 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨡ U+2A21 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨢ U+2A22 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨣ U+2A23 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨤ U+2A24 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨥ U+2A25 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨦ U+2A26 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨧ U+2A27 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨨ U+2A28 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨩ U+2A29 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨪ U+2A2A | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨫ U+2A2B | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨬ U+2A2C | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨭ U+2A2D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨮ U+2A2E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨸ U+2A38 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨹ U+2A39 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨺ U+2A3A | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⨾ U+2A3E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩀ U+2A40 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩁ U+2A41 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩂ U+2A42 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩃ U+2A43 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩄ U+2A44 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩅ U+2A45 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩆ U+2A46 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩇ U+2A47 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩈ U+2A48 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩉ U+2A49 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩊ U+2A4A | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩋ U+2A4B | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩌ U+2A4C | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩍ U+2A4D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩎ U+2A4E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩏ U+2A4F | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩑ U+2A51 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩒ U+2A52 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩓ U+2A53 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩔ U+2A54 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩕ U+2A55 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩖ U+2A56 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩗ U+2A57 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩘ U+2A58 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩙ U+2A59 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩚ U+2A5A | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩛ U+2A5B | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩜ U+2A5C | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩝ U+2A5D | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩞ U+2A5E | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩟ U+2A5F | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩠ U+2A60 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩡ U+2A61 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩢ U+2A62 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⩣ U+2A63 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⫛ U+2ADB | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⫶ U+2AF6 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⫻ U+2AFB | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
⫽ U+2AFD | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
String && U+0026 U+0026 | infix | 0.2222222222222222em | 0.2222222222222222em | N/A |
% U+0025 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
* U+002A | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
. U+002E | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
? U+003F | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
@ U+0040 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
^ U+005E | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
· U+00B7 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
× U+00D7 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
• U+2022 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⁃ U+2043 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
∗ U+2217 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
∘ U+2218 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
∙ U+2219 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
≀ U+2240 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊗ U+2297 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊙ U+2299 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊚ U+229A | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊛ U+229B | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊠ U+22A0 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊡ U+22A1 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⊺ U+22BA | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋄ U+22C4 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋅ U+22C5 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋆ U+22C6 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋇ U+22C7 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋉ U+22C9 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋊ U+22CA | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋋ U+22CB | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⋌ U+22CC | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⌅ U+2305 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⌆ U+2306 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⟋ U+27CB | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⟍ U+27CD | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧆ U+29C6 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧇ U+29C7 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧈ U+29C8 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧔ U+29D4 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧕ U+29D5 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧖ U+29D6 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧗ U+29D7 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⧢ U+29E2 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨝ U+2A1D | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨞ U+2A1E | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨯ U+2A2F | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨰ U+2A30 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨱ U+2A31 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨲ U+2A32 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨳ U+2A33 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨴ U+2A34 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨵ U+2A35 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨶ U+2A36 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨷ U+2A37 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨻ U+2A3B | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨼ U+2A3C | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨽ U+2A3D | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⨿ U+2A3F | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⩐ U+2A50 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⩤ U+2A64 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⩥ U+2A65 | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⫝̸ U+2ADC | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⫝ U+2ADD | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
⫾ U+2AFE | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
String ** U+002A U+002A | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
String <> U+003C U+003E | infix | 0.16666666666666666em | 0.16666666666666666em | N/A |
! U+0021 | prefix | 0 | 0 | N/A |
+ U+002B | prefix | 0 | 0 | N/A |
- U+002D | prefix | 0 | 0 | N/A |
¬ U+00AC | prefix | 0 | 0 | N/A |
± U+00B1 | prefix | 0 | 0 | N/A |
‘ U+2018 | prefix | 0 | 0 | fence |
“ U+201C | prefix | 0 | 0 | fence |
∀ U+2200 | prefix | 0 | 0 | N/A |
∁ U+2201 | prefix | 0 | 0 | N/A |
∃ U+2203 | prefix | 0 | 0 | N/A |
∄ U+2204 | prefix | 0 | 0 | N/A |
∇ U+2207 | prefix | 0 | 0 | N/A |
− U+2212 | prefix | 0 | 0 | N/A |
∓ U+2213 | prefix | 0 | 0 | N/A |
∟ U+221F | prefix | 0 | 0 | N/A |
∠ U+2220 | prefix | 0 | 0 | N/A |
∡ U+2221 | prefix | 0 | 0 | N/A |
∢ U+2222 | prefix | 0 | 0 | N/A |
∴ U+2234 | prefix | 0 | 0 | N/A |
∵ U+2235 | prefix | 0 | 0 | N/A |
∼ U+223C | prefix | 0 | 0 | N/A |
⊾ U+22BE | prefix | 0 | 0 | N/A |
⊿ U+22BF | prefix | 0 | 0 | N/A |
⌐ U+2310 | prefix | 0 | 0 | N/A |
⌙ U+2319 | prefix | 0 | 0 | N/A |
➕ U+2795 | prefix | 0 | 0 | N/A |
➖ U+2796 | prefix | 0 | 0 | N/A |
⟀ U+27C0 | prefix | 0 | 0 | N/A |
⦛ U+299B | prefix | 0 | 0 | N/A |
⦜ U+299C | prefix | 0 | 0 | N/A |
⦝ U+299D | prefix | 0 | 0 | N/A |
⦞ U+299E | prefix | 0 | 0 | N/A |
⦟ U+299F | prefix | 0 | 0 | N/A |
⦠ U+29A0 | prefix | 0 | 0 | N/A |
⦡ U+29A1 | prefix | 0 | 0 | N/A |
⦢ U+29A2 | prefix | 0 | 0 | N/A |
⦣ U+29A3 | prefix | 0 | 0 | N/A |
⦤ U+29A4 | prefix | 0 | 0 | N/A |
⦥ U+29A5 | prefix | 0 | 0 | N/A |
⦦ U+29A6 | prefix | 0 | 0 | N/A |
⦧ U+29A7 | prefix | 0 | 0 | N/A |
⦨ U+29A8 | prefix | 0 | 0 | N/A |
⦩ U+29A9 | prefix | 0 | 0 | N/A |
⦪ U+29AA | prefix | 0 | 0 | N/A |
⦫ U+29AB | prefix | 0 | 0 | N/A |
⦬ U+29AC | prefix | 0 | 0 | N/A |
⦭ U+29AD | prefix | 0 | 0 | N/A |
⦮ U+29AE | prefix | 0 | 0 | N/A |
⦯ U+29AF | prefix | 0 | 0 | N/A |
⫬ U+2AEC | prefix | 0 | 0 | N/A |
⫭ U+2AED | prefix | 0 | 0 | N/A |
String || U+007C U+007C | prefix | 0 | 0 | fence |
! U+0021 | postfix | 0 | 0 | N/A |
" U+0022 | postfix | 0 | 0 | N/A |
% U+0025 | postfix | 0 | 0 | N/A |
& U+0026 | postfix | 0 | 0 | N/A |
' U+0027 | postfix | 0 | 0 | N/A |
` U+0060 | postfix | 0 | 0 | N/A |
¨ U+00A8 | postfix | 0 | 0 | N/A |
° U+00B0 | postfix | 0 | 0 | N/A |
² U+00B2 | postfix | 0 | 0 | N/A |
³ U+00B3 | postfix | 0 | 0 | N/A |
´ U+00B4 | postfix | 0 | 0 | N/A |
¸ U+00B8 | postfix | 0 | 0 | N/A |
¹ U+00B9 | postfix | 0 | 0 | N/A |
ˊ U+02CA | postfix | 0 | 0 | N/A |
ˋ U+02CB | postfix | 0 | 0 | N/A |
˘ U+02D8 | postfix | 0 | 0 | N/A |
˙ U+02D9 | postfix | 0 | 0 | N/A |
˚ U+02DA | postfix | 0 | 0 | N/A |
˝ U+02DD | postfix | 0 | 0 | N/A |
̑ U+0311 | postfix | 0 | 0 | N/A |
’ U+2019 | postfix | 0 | 0 | fence |
‚ U+201A | postfix | 0 | 0 | N/A |
‛ U+201B | postfix | 0 | 0 | N/A |
” U+201D | postfix | 0 | 0 | fence |
„ U+201E | postfix | 0 | 0 | N/A |
‟ U+201F | postfix | 0 | 0 | N/A |
′ U+2032 | postfix | 0 | 0 | N/A |
″ U+2033 | postfix | 0 | 0 | N/A |
‴ U+2034 | postfix | 0 | 0 | N/A |
‵ U+2035 | postfix | 0 | 0 | N/A |
‶ U+2036 | postfix | 0 | 0 | N/A |
‷ U+2037 | postfix | 0 | 0 | N/A |
⁗ U+2057 | postfix | 0 | 0 | N/A |
⃛ U+20DB | postfix | 0 | 0 | N/A |
⃜ U+20DC | postfix | 0 | 0 | N/A |
⏍ U+23CD | postfix | 0 | 0 | N/A |
String !! U+0021 U+0021 | postfix | 0 | 0 | N/A |
String ++ U+002B U+002B | postfix | 0 | 0 | N/A |
String -- U+002D U+002D | postfix | 0 | 0 | N/A |
String || U+007C U+007C | postfix | 0 | 0 | fence |
( U+0028 | prefix | 0 | 0 | stretchy symmetric fence |
[ U+005B | prefix | 0 | 0 | stretchy symmetric fence |
{ U+007B | prefix | 0 | 0 | stretchy symmetric fence |
| U+007C | prefix | 0 | 0 | stretchy symmetric fence |
‖ U+2016 | prefix | 0 | 0 | stretchy symmetric fence |
⌈ U+2308 | prefix | 0 | 0 | stretchy symmetric fence |
⌊ U+230A | prefix | 0 | 0 | stretchy symmetric fence |
〈 U+2329 | prefix | 0 | 0 | stretchy symmetric fence |
❲ U+2772 | prefix | 0 | 0 | stretchy symmetric fence |
⟦ U+27E6 | prefix | 0 | 0 | stretchy symmetric fence |
⟨ U+27E8 | prefix | 0 | 0 | stretchy symmetric fence |
⟪ U+27EA | prefix | 0 | 0 | stretchy symmetric fence |
⟬ U+27EC | prefix | 0 | 0 | stretchy symmetric fence |
⟮ U+27EE | prefix | 0 | 0 | stretchy symmetric fence |
⦀ U+2980 | prefix | 0 | 0 | stretchy symmetric fence |
⦃ U+2983 | prefix | 0 | 0 | stretchy symmetric fence |
⦅ U+2985 | prefix | 0 | 0 | stretchy symmetric fence |
⦇ U+2987 | prefix | 0 | 0 | stretchy symmetric fence |
⦉ U+2989 | prefix | 0 | 0 | stretchy symmetric fence |
⦋ U+298B | prefix | 0 | 0 | stretchy symmetric fence |
⦍ U+298D | prefix | 0 | 0 | stretchy symmetric fence |
⦏ U+298F | prefix | 0 | 0 | stretchy symmetric fence |
⦑ U+2991 | prefix | 0 | 0 | stretchy symmetric fence |
⦓ U+2993 | prefix | 0 | 0 | stretchy symmetric fence |
⦕ U+2995 | prefix | 0 | 0 | stretchy symmetric fence |
⦗ U+2997 | prefix | 0 | 0 | stretchy symmetric fence |
⦙ U+2999 | prefix | 0 | 0 | stretchy symmetric fence |
⧘ U+29D8 | prefix | 0 | 0 | stretchy symmetric fence |
⧚ U+29DA | prefix | 0 | 0 | stretchy symmetric fence |
⧼ U+29FC | prefix | 0 | 0 | stretchy symmetric fence |
) U+0029 | postfix | 0 | 0 | stretchy symmetric fence |
] U+005D | postfix | 0 | 0 | stretchy symmetric fence |
| U+007C | postfix | 0 | 0 | stretchy symmetric fence |
} U+007D | postfix | 0 | 0 | stretchy symmetric fence |
‖ U+2016 | postfix | 0 | 0 | stretchy symmetric fence |
⌉ U+2309 | postfix | 0 | 0 | stretchy symmetric fence |
⌋ U+230B | postfix | 0 | 0 | stretchy symmetric fence |
〉 U+232A | postfix | 0 | 0 | stretchy symmetric fence |
❳ U+2773 | postfix | 0 | 0 | stretchy symmetric fence |
⟧ U+27E7 | postfix | 0 | 0 | stretchy symmetric fence |
⟩ U+27E9 | postfix | 0 | 0 | stretchy symmetric fence |
⟫ U+27EB | postfix | 0 | 0 | stretchy symmetric fence |
⟭ U+27ED | postfix | 0 | 0 | stretchy symmetric fence |
⟯ U+27EF | postfix | 0 | 0 | stretchy symmetric fence |
⦀ U+2980 | postfix | 0 | 0 | stretchy symmetric fence |
⦄ U+2984 | postfix | 0 | 0 | stretchy symmetric fence |
⦆ U+2986 | postfix | 0 | 0 | stretchy symmetric fence |
⦈ U+2988 | postfix | 0 | 0 | stretchy symmetric fence |
⦊ U+298A | postfix | 0 | 0 | stretchy symmetric fence |
⦌ U+298C | postfix | 0 | 0 | stretchy symmetric fence |
⦎ U+298E | postfix | 0 | 0 | stretchy symmetric fence |
⦐ U+2990 | postfix | 0 | 0 | stretchy symmetric fence |
⦒ U+2992 | postfix | 0 | 0 | stretchy symmetric fence |
⦔ U+2994 | postfix | 0 | 0 | stretchy symmetric fence |
⦖ U+2996 | postfix | 0 | 0 | stretchy symmetric fence |
⦘ U+2998 | postfix | 0 | 0 | stretchy symmetric fence |
⦙ U+2999 | postfix | 0 | 0 | stretchy symmetric fence |
⧙ U+29D9 | postfix | 0 | 0 | stretchy symmetric fence |
⧛ U+29DB | postfix | 0 | 0 | stretchy symmetric fence |
⧽ U+29FD | postfix | 0 | 0 | stretchy symmetric fence |
∫ U+222B | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∬ U+222C | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∭ U+222D | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∮ U+222E | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∯ U+222F | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∰ U+2230 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∱ U+2231 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∲ U+2232 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
∳ U+2233 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨋ U+2A0B | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨌ U+2A0C | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨍ U+2A0D | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨎ U+2A0E | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨏ U+2A0F | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨐ U+2A10 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨑ U+2A11 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨒ U+2A12 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨓ U+2A13 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨔ U+2A14 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨕ U+2A15 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨖ U+2A16 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨗ U+2A17 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨘ U+2A18 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨙ U+2A19 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨚ U+2A1A | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨛ U+2A1B | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
⨜ U+2A1C | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop |
^ U+005E | postfix | 0 | 0 | stretchy |
_ U+005F | postfix | 0 | 0 | stretchy |
~ U+007E | postfix | 0 | 0 | stretchy |
¯ U+00AF | postfix | 0 | 0 | stretchy |
ˆ U+02C6 | postfix | 0 | 0 | stretchy |
ˇ U+02C7 | postfix | 0 | 0 | stretchy |
ˉ U+02C9 | postfix | 0 | 0 | stretchy |
ˍ U+02CD | postfix | 0 | 0 | stretchy |
˜ U+02DC | postfix | 0 | 0 | stretchy |
˷ U+02F7 | postfix | 0 | 0 | stretchy |
̂ U+0302 | postfix | 0 | 0 | stretchy |
‾ U+203E | postfix | 0 | 0 | stretchy |
⌢ U+2322 | postfix | 0 | 0 | stretchy |
⌣ U+2323 | postfix | 0 | 0 | stretchy |
⎴ U+23B4 | postfix | 0 | 0 | stretchy |
⎵ U+23B5 | postfix | 0 | 0 | stretchy |
⏜ U+23DC | postfix | 0 | 0 | stretchy |
⏝ U+23DD | postfix | 0 | 0 | stretchy |
⏞ U+23DE | postfix | 0 | 0 | stretchy |
⏟ U+23DF | postfix | 0 | 0 | stretchy |
⏠ U+23E0 | postfix | 0 | 0 | stretchy |
⏡ U+23E1 | postfix | 0 | 0 | stretchy |
𞻰 U+1EEF0 | postfix | 0 | 0 | stretchy |
𞻱 U+1EEF1 | postfix | 0 | 0 | stretchy |
∏ U+220F | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
∐ U+2210 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
∑ U+2211 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⋀ U+22C0 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⋁ U+22C1 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⋂ U+22C2 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⋃ U+22C3 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨀ U+2A00 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨁ U+2A01 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨂ U+2A02 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨃ U+2A03 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨄ U+2A04 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨅ U+2A05 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨆ U+2A06 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨇ U+2A07 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨈ U+2A08 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨉ U+2A09 | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨊ U+2A0A | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨝ U+2A1D | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⨞ U+2A1E | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⫼ U+2AFC | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
⫿ U+2AFF | prefix | 0.16666666666666666em | 0.16666666666666666em | symmetric largeop movablelimits |
\ U+005C | infix | 0 | 0 | N/A |
_ U+005F | infix | 0 | 0 | N/A |
U+2061 | infix | 0 | 0 | N/A |
U+2062 | infix | 0 | 0 | N/A |
U+2063 | infix | 0 | 0 | separator |
U+2064 | infix | 0 | 0 | N/A |
∆ U+2206 | infix | 0 | 0 | N/A |
ⅅ U+2145 | prefix | 0.16666666666666666em | 0 | N/A |
ⅆ U+2146 | prefix | 0.16666666666666666em | 0 | N/A |
∂ U+2202 | prefix | 0.16666666666666666em | 0 | N/A |
√ U+221A | prefix | 0.16666666666666666em | 0 | N/A |
∛ U+221B | prefix | 0.16666666666666666em | 0 | N/A |
∜ U+221C | prefix | 0.16666666666666666em | 0 | N/A |
, U+002C | infix | 0 | 0.16666666666666666em | separator |
: U+003A | infix | 0 | 0.16666666666666666em | N/A |
; U+003B | infix | 0 | 0.16666666666666666em | separator |
⦂ U+2982 | infix | 0 | 0.16666666666666666em | N/A |
This section is non-normative.
The following table gives mappings between spacing and non spacing characters when used in MathML accent constructs.
Non Combining | Style | Combining | ||
---|---|---|---|---|
U+002B | plus sign | below | U+031F | combining plus sign below |
U+002D | hyphen-minus | above | U+0305 | combining overline |
U+002D | hyphen-minus | below | U+0320 | combining minus sign below |
U+002D | hyphen-minus | below | U+0332 | combining low line |
U+002E | full stop | above | U+0307 | combining dot above |
U+002E | full stop | below | U+0323 | combining dot below |
U+005E | circumflex accent | above | U+0302 | combining circumflex accent |
U+005E | circumflex accent | below | U+032D | combining circumflex accent below |
U+005F | low line | below | U+0332 | combining low line |
U+0060 | grave accent | above | U+0300 | combining grave accent |
U+0060 | grave accent | below | U+0316 | combining grave accent below |
U+007E | tilde | above | U+0303 | combining tilde |
U+007E | tilde | below | U+0330 | combining tilde below |
U+00A8 | diaeresis | above | U+0308 | combining diaeresis |
U+00A8 | diaeresis | below | U+0324 | combining diaeresis below |
U+00AF | macron | above | U+0304 | combining macron |
U+00AF | macron | above | U+0305 | combining overline |
U+00B4 | acute accent | above | U+0301 | combining acute accent |
U+00B4 | acute accent | below | U+0317 | combining acute accent below |
U+00B8 | cedilla | below | U+0327 | combining cedilla |
U+02C6 | modifier letter circumflex accent | above | U+0302 | combining circumflex accent |
U+02C7 | caron | above | U+030C | combining caron |
U+02C7 | caron | below | U+032C | combining caron below |
U+02D8 | breve | above | U+0306 | combining breve |
U+02D8 | breve | below | U+032E | combining breve below |
U+02D9 | dot above | above | U+0307 | combining dot above |
U+02D9 | dot above | below | U+0323 | combining dot below |
U+02DB | ogonek | below | U+0328 | combining ogonek |
U+02DC | small tilde | above | U+0303 | combining tilde |
U+02DC | small tilde | below | U+0330 | combining tilde below |
U+02DD | double acute accent | above | U+030B | combining double acute accent |
U+203E | overline | above | U+0305 | combining overline |
U+2190 | leftwards arrow | above | U+20D6 | |
U+2192 | rightwards arrow | above | U+20D7 | combining right arrow above |
U+2192 | rightwards arrow | above | U+20EF | combining right arrow below |
U+2212 | minus sign | above | U+0305 | combining overline |
U+2212 | minus sign | below | U+0332 | combining low line |
U+27F6 | long rightwards arrow | above | U+20D7 | combining right arrow above |
U+27F6 | long rightwards arrow | above | U+20EF | combining right arrow below |
Combining | Style | Non Combining | ||
---|---|---|---|---|
U+0300 | combining grave accent | above | U+0060 | grave accent |
U+0301 | combining acute accent | above | U+00B4 | acute accent |
U+0302 | combining circumflex accent | above | U+005E | circumflex accent |
U+0302 | combining circumflex accent | above | U+02C6 | modifier letter circumflex accent |
U+0303 | combining tilde | above | U+007E | tilde |
U+0303 | combining tilde | above | U+02DC | small tilde |
U+0304 | combining macron | above | U+00AF | macron |
U+0305 | combining overline | above | U+002D | hyphen-minus |
U+0305 | combining overline | above | U+00AF | macron |
U+0305 | combining overline | above | U+203E | overline |
U+0305 | combining overline | above | U+2212 | minus sign |
U+0306 | combining breve | above | U+02D8 | breve |
U+0307 | combining dot above | above | U+02E | |
U+0307 | combining dot above | above | U+002E | full stop |
U+0307 | combining dot above | above | U+02D9 | dot above |
U+0308 | combining diaeresis | above | U+00A8 | diaeresis |
U+030B | combining double acute accent | above | U+02DD | double acute accent |
U+030C | combining caron | above | U+02C7 | caron |
U+0312 | combining turned comma above | above | U+0B8 | |
U+0316 | combining grave accent below | below | U+0060 | grave accent |
U+0317 | combining acute accent below | below | U+00B4 | acute accent |
U+031F | combining plus sign below | below | U+002B | plus sign |
U+0320 | combining minus sign below | below | U+002D | hyphen-minus |
U+0323 | combining dot below | below | U+002E | full stop |
U+0323 | combining dot below | below | U+02D9 | dot above |
U+0324 | combining diaeresis below | below | U+00A8 | diaeresis |
U+0327 | combining cedilla | below | U+00B8 | cedilla |
U+0328 | combining ogonek | below | U+02DB | ogonek |
U+032C | combining caron below | below | U+02C7 | caron |
U+032D | combining circumflex accent below | below | U+005E | circumflex accent |
U+032E | combining breve below | below | U+02D8 | breve |
U+0330 | combining tilde below | below | U+007E | tilde |
U+0330 | combining tilde below | below | U+02DC | small tilde |
U+0332 | combining low line | below | U+002D | hyphen-minus |
U+0332 | combining low line | below | U+005F | low line |
U+0332 | combining low line | below | U+2212 | minus sign |
U+0338 | combining long solidus overlay | over | U+02F | |
U+20D7 | combining right arrow above | above | U+2192 | rightwards arrow |
U+20D7 | combining right arrow above | above | U+27F6 | long rightwards arrow |
U+20EF | combining right arrow below | above | U+2192 | rightwards arrow |
U+20EF | combining right arrow below | above | U+27F6 | long rightwards arrow |
This section is non-normative.
The following table provide fallback that user agents may use for
stretching a given base character when the font does not
provide a MATH.MathVariants
table.
The algorithms of
§ 5.3 Size variants for operators (MathVariants
)
works the same except with some adjustments:
MathVariants.horizGlyphConstructionOffsets[]
item ;
if it is vertical it corresponds to
a MathVariants.vertGlyphConstructionOffsets[]
item.
MathGlyphConstruction.mathGlyphVariantRecord
is
always empty.
MathVariants.minConnectorOverlap
,
GlyphPartRecord.startConnectorLength
and
GlyphPartRecord.endConnectorLength
are treated as 0.
MathGlyphConstruction.GlyphAssembly.partRecords
is built
from each table row as follows:
Base Character | Glyph Construction | Extender Character | Bottom/Left Character | Middle Character | Top/Right Character |
---|---|---|---|---|---|
U+0028 ( | Vertical | U+239C ⎜ | U+239D ⎝ | N/A | U+239B ⎛ |
U+0029 ) | Vertical | U+239F ⎟ | U+23A0 ⎠ | N/A | U+239E ⎞ |
U+003D = | Horizontal | U+003D = | U+003D = | N/A | N/A |
U+005B [ | Vertical | U+23A2 ⎢ | U+23A3 ⎣ | N/A | U+23A1 ⎡ |
U+005D ] | Vertical | U+23A5 ⎥ | U+23A6 ⎦ | N/A | U+23A4 ⎤ |
U+005F _ | Horizontal | U+005F _ | U+005F _ | N/A | N/A |
U+007B { | Vertical | U+23AA ⎪ | U+23A9 ⎩ | U+23A8 ⎨ | U+23A7 ⎧ |
U+007C | | Vertical | U+007C | | U+007C | | N/A | N/A |
U+007D } | Vertical | U+23AA ⎪ | U+23AD ⎭ | U+23AC ⎬ | U+23AB ⎫ |
U+00AF ¯ | Horizontal | U+00AF ¯ | U+00AF ¯ | N/A | N/A |
U+2016 ‖ | Vertical | U+2016 ‖ | U+2016 ‖ | N/A | N/A |
U+203E ‾ | Horizontal | U+203E ‾ | U+203E ‾ | N/A | N/A |
U+2190 ← | Horizontal | U+23AF ⎯ | U+2190 ← | N/A | U+23AF ⎯ |
U+2191 ↑ | Vertical | U+23D0 ⏐ | U+23D0 ⏐ | N/A | U+2191 ↑ |
U+2192 → | Horizontal | U+23AF ⎯ | U+23AF ⎯ | N/A | U+2192 → |
U+2193 ↓ | Vertical | U+23D0 ⏐ | U+2193 ↓ | N/A | U+23D0 ⏐ |
U+2194 ↔ | Horizontal | U+23AF ⎯ | U+2190 ← | N/A | U+2192 → |
U+2195 ↕ | Vertical | U+23D0 ⏐ | U+2193 ↓ | N/A | U+2191 ↑ |
U+21A4 ↤ | Horizontal | U+23AF ⎯ | U+2190 ← | N/A | U+22A3 ⊣ |
U+21A6 ↦ | Horizontal | U+23AF ⎯ | U+22A2 ⊢ | N/A | U+2192 → |
U+21BC ↼ | Horizontal | U+23AF ⎯ | U+21BC ↼ | N/A | U+23AF ⎯ |
U+21BD ↽ | Horizontal | U+23AF ⎯ | U+21BD ↽ | N/A | U+23AF ⎯ |
U+21C0 ⇀ | Horizontal | U+23AF ⎯ | U+23AF ⎯ | N/A | U+21C0 ⇀ |
U+21C1 ⇁ | Horizontal | U+23AF ⎯ | U+23AF ⎯ | N/A | U+21C1 ⇁ |
U+2223 ∣ | Vertical | U+2223 ∣ | U+2223 ∣ | N/A | N/A |
U+2225 ∥ | Vertical | U+2225 ∥ | U+2225 ∥ | N/A | N/A |
U+2308 ⌈ | Vertical | U+23A2 ⎢ | U+23A2 ⎢ | N/A | U+23A1 ⎡ |
U+2309 ⌉ | Vertical | U+23A5 ⎥ | U+23A5 ⎥ | N/A | U+23A4 ⎤ |
U+230A ⌊ | Vertical | U+23A2 ⎢ | U+23A3 ⎣ | N/A | N/A |
U+230B ⌋ | Vertical | U+23A5 ⎥ | U+23A6 ⎦ | N/A | N/A |
U+23B0 ⎰ | Vertical | U+23AA ⎪ | U+23AD ⎭ | N/A | U+23A7 ⎧ |
U+23B1 ⎱ | Vertical | U+23AA ⎪ | U+23A9 ⎩ | N/A | U+23AB ⎫ |
U+27F5 ⟵ | Horizontal | U+23AF ⎯ | U+2190 ← | N/A | U+23AF ⎯ |
U+27F6 ⟶ | Horizontal | U+23AF ⎯ | U+23AF ⎯ | N/A | U+2192 → |
U+27F7 ⟷ | Horizontal | U+23AF ⎯ | U+2190 ← | N/A | U+2192 → |
U+294E ⥎ | Horizontal | U+23AF ⎯ | U+21BC ↼ | N/A | U+21C0 ⇀ |
U+2950 ⥐ | Horizontal | U+23AF ⎯ | U+21BD ↽ | N/A | U+21C1 ⇁ |
U+295A ⥚ | Horizontal | U+23AF ⎯ | U+21BC ↼ | N/A | U+22A3 ⊣ |
U+295B ⥛ | Horizontal | U+23AF ⎯ | U+22A2 ⊢ | N/A | U+21C0 ⇀ |
U+295E ⥞ | Horizontal | U+23AF ⎯ | U+21BD ↽ | N/A | U+22A3 ⊣ |
U+295F ⥟ | Horizontal | U+23AF ⎯ | U+22A2 ⊢ | N/A | U+21C1 ⇁ |
text-transform
Mappingsbold-script
mappingsOriginal | bold-script | Δcode point |
---|---|---|
A U+0041 | 𝓐 U+1D4D0 | 1D48F |
B U+0042 | 𝓑 U+1D4D1 | 1D48F |
C U+0043 | 𝓒 U+1D4D2 | 1D48F |
D U+0044 | 𝓓 U+1D4D3 | 1D48F |
E U+0045 | 𝓔 U+1D4D4 | 1D48F |
F U+0046 | 𝓕 U+1D4D5 | 1D48F |
G U+0047 | 𝓖 U+1D4D6 | 1D48F |
H U+0048 | 𝓗 U+1D4D7 | 1D48F |
I U+0049 | 𝓘 U+1D4D8 | 1D48F |
J U+004A | 𝓙 U+1D4D9 | 1D48F |
K U+004B | 𝓚 U+1D4DA | 1D48F |
L U+004C | 𝓛 U+1D4DB | 1D48F |
M U+004D | 𝓜 U+1D4DC | 1D48F |
N U+004E | 𝓝 U+1D4DD | 1D48F |
O U+004F | 𝓞 U+1D4DE | 1D48F |
P U+0050 | 𝓟 U+1D4DF | 1D48F |
Q U+0051 | 𝓠 U+1D4E0 | 1D48F |
R U+0052 | 𝓡 U+1D4E1 | 1D48F |
S U+0053 | 𝓢 U+1D4E2 | 1D48F |
T U+0054 | 𝓣 U+1D4E3 | 1D48F |
U U+0055 | 𝓤 U+1D4E4 | 1D48F |
V U+0056 | 𝓥 U+1D4E5 | 1D48F |
W U+0057 | 𝓦 U+1D4E6 | 1D48F |
X U+0058 | 𝓧 U+1D4E7 | 1D48F |
Y U+0059 | 𝓨 U+1D4E8 | 1D48F |
Z U+005A | 𝓩 U+1D4E9 | 1D48F |
a U+0061 | 𝓪 U+1D4EA | 1D489 |
b U+0062 | 𝓫 U+1D4EB | 1D489 |
c U+0063 | 𝓬 U+1D4EC | 1D489 |
d U+0064 | 𝓭 U+1D4ED | 1D489 |
e U+0065 | 𝓮 U+1D4EE | 1D489 |
f U+0066 | 𝓯 U+1D4EF | 1D489 |
g U+0067 | 𝓰 U+1D4F0 | 1D489 |
h U+0068 | 𝓱 U+1D4F1 | 1D489 |
i U+0069 | 𝓲 U+1D4F2 | 1D489 |
j U+006A | 𝓳 U+1D4F3 | 1D489 |
k U+006B | 𝓴 U+1D4F4 | 1D489 |
l U+006C | 𝓵 U+1D4F5 | 1D489 |
m U+006D | 𝓶 U+1D4F6 | 1D489 |
n U+006E | 𝓷 U+1D4F7 | 1D489 |
o U+006F | 𝓸 U+1D4F8 | 1D489 |
p U+0070 | 𝓹 U+1D4F9 | 1D489 |
q U+0071 | 𝓺 U+1D4FA | 1D489 |
r U+0072 | 𝓻 U+1D4FB | 1D489 |
s U+0073 | 𝓼 U+1D4FC | 1D489 |
t U+0074 | 𝓽 U+1D4FD | 1D489 |
u U+0075 | 𝓾 U+1D4FE | 1D489 |
v U+0076 | 𝓿 U+1D4FF | 1D489 |
w U+0077 | 𝔀 U+1D500 | 1D489 |
x U+0078 | 𝔁 U+1D501 | 1D489 |
y U+0079 | 𝔂 U+1D502 | 1D489 |
z U+007A | 𝔃 U+1D503 | 1D489 |
bold-italic
mappingsOriginal | bold-italic | Δcode point |
---|---|---|
A U+0041 | 𝑨 U+1D468 | 1D427 |
B U+0042 | 𝑩 U+1D469 | 1D427 |
C U+0043 | 𝑪 U+1D46A | 1D427 |
D U+0044 | 𝑫 U+1D46B | 1D427 |
E U+0045 | 𝑬 U+1D46C | 1D427 |
F U+0046 | 𝑭 U+1D46D | 1D427 |
G U+0047 | 𝑮 U+1D46E | 1D427 |
H U+0048 | 𝑯 U+1D46F | 1D427 |
I U+0049 | 𝑰 U+1D470 | 1D427 |
J U+004A | 𝑱 U+1D471 | 1D427 |
K U+004B | 𝑲 U+1D472 | 1D427 |
L U+004C | 𝑳 U+1D473 | 1D427 |
M U+004D | 𝑴 U+1D474 | 1D427 |
N U+004E | 𝑵 U+1D475 | 1D427 |
O U+004F | 𝑶 U+1D476 | 1D427 |
P U+0050 | 𝑷 U+1D477 | 1D427 |
Q U+0051 | 𝑸 U+1D478 | 1D427 |
R U+0052 | 𝑹 U+1D479 | 1D427 |
S U+0053 | 𝑺 U+1D47A | 1D427 |
T U+0054 | 𝑻 U+1D47B | 1D427 |
U U+0055 | 𝑼 U+1D47C | 1D427 |
V U+0056 | 𝑽 U+1D47D | 1D427 |
W U+0057 | 𝑾 U+1D47E | 1D427 |
X U+0058 | 𝑿 U+1D47F | 1D427 |
Y U+0059 | 𝒀 U+1D480 | 1D427 |
Z U+005A | 𝒁 U+1D481 | 1D427 |
a U+0061 | 𝒂 U+1D482 | 1D421 |
b U+0062 | 𝒃 U+1D483 | 1D421 |
c U+0063 | 𝒄 U+1D484 | 1D421 |
d U+0064 | 𝒅 U+1D485 | 1D421 |
e U+0065 | 𝒆 U+1D486 | 1D421 |
f U+0066 | 𝒇 U+1D487 | 1D421 |
g U+0067 | 𝒈 U+1D488 | 1D421 |
h U+0068 | 𝒉 U+1D489 | 1D421 |
i U+0069 | 𝒊 U+1D48A | 1D421 |
j U+006A | 𝒋 U+1D48B | 1D421 |
k U+006B | 𝒌 U+1D48C | 1D421 |
l U+006C | 𝒍 U+1D48D | 1D421 |
m U+006D | 𝒎 U+1D48E | 1D421 |
n U+006E | 𝒏 U+1D48F | 1D421 |
o U+006F | 𝒐 U+1D490 | 1D421 |
p U+0070 | 𝒑 U+1D491 | 1D421 |
q U+0071 | 𝒒 U+1D492 | 1D421 |
r U+0072 | 𝒓 U+1D493 | 1D421 |
s U+0073 | 𝒔 U+1D494 | 1D421 |
t U+0074 | 𝒕 U+1D495 | 1D421 |
u U+0075 | 𝒖 U+1D496 | 1D421 |
v U+0076 | 𝒗 U+1D497 | 1D421 |
w U+0077 | 𝒘 U+1D498 | 1D421 |
x U+0078 | 𝒙 U+1D499 | 1D421 |
y U+0079 | 𝒚 U+1D49A | 1D421 |
z U+007A | 𝒛 U+1D49B | 1D421 |
Α U+0391 | 𝜜 U+1D71C | 1D38B |
Β U+0392 | 𝜝 U+1D71D | 1D38B |
Γ U+0393 | 𝜞 U+1D71E | 1D38B |
Δ U+0394 | 𝜟 U+1D71F | 1D38B |
Ε U+0395 | 𝜠 U+1D720 | 1D38B |
Ζ U+0396 | 𝜡 U+1D721 | 1D38B |
Η U+0397 | 𝜢 U+1D722 | 1D38B |
Θ U+0398 | 𝜣 U+1D723 | 1D38B |
Ι U+0399 | 𝜤 U+1D724 | 1D38B |
Κ U+039A | 𝜥 U+1D725 | 1D38B |
Λ U+039B | 𝜦 U+1D726 | 1D38B |
Μ U+039C | 𝜧 U+1D727 | 1D38B |
Ν U+039D | 𝜨 U+1D728 | 1D38B |
Ξ U+039E | 𝜩 U+1D729 | 1D38B |
Ο U+039F | 𝜪 U+1D72A | 1D38B |
Π U+03A0 | 𝜫 U+1D72B | 1D38B |
Ρ U+03A1 | 𝜬 U+1D72C | 1D38B |
ϴ U+03F4 | 𝜭 U+1D72D | 1D339 |
Σ U+03A3 | 𝜮 U+1D72E | 1D38B |
Τ U+03A4 | 𝜯 U+1D72F | 1D38B |
Υ U+03A5 | 𝜰 U+1D730 | 1D38B |
Φ U+03A6 | 𝜱 U+1D731 | 1D38B |
Χ U+03A7 | 𝜲 U+1D732 | 1D38B |
Ψ U+03A8 | 𝜳 U+1D733 | 1D38B |
Ω U+03A9 | 𝜴 U+1D734 | 1D38B |
∇ U+2207 | 𝜵 U+1D735 | 1B52E |
α U+03B1 | 𝜶 U+1D736 | 1D385 |
β U+03B2 | 𝜷 U+1D737 | 1D385 |
γ U+03B3 | 𝜸 U+1D738 | 1D385 |
δ U+03B4 | 𝜹 U+1D739 | 1D385 |
ε U+03B5 | 𝜺 U+1D73A | 1D385 |
ζ U+03B6 | 𝜻 U+1D73B | 1D385 |
η U+03B7 | 𝜼 U+1D73C | 1D385 |
θ U+03B8 | 𝜽 U+1D73D | 1D385 |
ι U+03B9 | 𝜾 U+1D73E | 1D385 |
κ U+03BA | 𝜿 U+1D73F | 1D385 |
λ U+03BB | 𝝀 U+1D740 | 1D385 |
μ U+03BC | 𝝁 U+1D741 | 1D385 |
ν U+03BD | 𝝂 U+1D742 | 1D385 |
ξ U+03BE | 𝝃 U+1D743 | 1D385 |
ο U+03BF | 𝝄 U+1D744 | 1D385 |
π U+03C0 | 𝝅 U+1D745 | 1D385 |
ρ U+03C1 | 𝝆 U+1D746 | 1D385 |
ς U+03C2 | 𝝇 U+1D747 | 1D385 |
σ U+03C3 | 𝝈 U+1D748 | 1D385 |
τ U+03C4 | 𝝉 U+1D749 | 1D385 |
υ U+03C5 | 𝝊 U+1D74A | 1D385 |
φ U+03C6 | 𝝋 U+1D74B | 1D385 |
χ U+03C7 | 𝝌 U+1D74C | 1D385 |
ψ U+03C8 | 𝝍 U+1D74D | 1D385 |
ω U+03C9 | 𝝎 U+1D74E | 1D385 |
∂ U+2202 | 𝝏 U+1D74F | 1B54D |
ϵ U+03F5 | 𝝐 U+1D750 | 1D35B |
ϑ U+03D1 | 𝝑 U+1D751 | 1D380 |
ϰ U+03F0 | 𝝒 U+1D752 | 1D362 |
ϕ U+03D5 | 𝝓 U+1D753 | 1D37E |
ϱ U+03F1 | 𝝔 U+1D754 | 1D363 |
ϖ U+03D6 | 𝝕 U+1D755 | 1D37F |
tailed
mappingsOriginal | tailed | Δcode point |
---|---|---|
ج U+062C | 𞹂 U+1EE42 | 1E816 |
ح U+062D | 𞹇 U+1EE47 | 1E81A |
ي U+064A | 𞹉 U+1EE49 | 1E7FF |
ل U+0644 | 𞹋 U+1EE4B | 1E807 |
ن U+0646 | 𞹍 U+1EE4D | 1E807 |
س U+0633 | 𞹎 U+1EE4E | 1E81B |
ع U+0639 | 𞹏 U+1EE4F | 1E816 |
ص U+0635 | 𞹑 U+1EE51 | 1E81C |
ق U+0642 | 𞹒 U+1EE52 | 1E810 |
ش U+0634 | 𞹔 U+1EE54 | 1E820 |
خ U+062E | 𞹗 U+1EE57 | 1E829 |
ض U+0636 | 𞹙 U+1EE59 | 1E823 |
غ U+063A | 𞹛 U+1EE5B | 1E821 |
ں U+06BA | 𞹝 U+1EE5D | 1E7A3 |
ٯ U+066F | 𞹟 U+1EE5F | 1E7F0 |
bold
mappingsOriginal | bold | Δcode point |
---|---|---|
A U+0041 | 𝐀 U+1D400 | 1D3BF |
B U+0042 | 𝐁 U+1D401 | 1D3BF |
C U+0043 | 𝐂 U+1D402 | 1D3BF |
D U+0044 | 𝐃 U+1D403 | 1D3BF |
E U+0045 | 𝐄 U+1D404 | 1D3BF |
F U+0046 | 𝐅 U+1D405 | 1D3BF |
G U+0047 | 𝐆 U+1D406 | 1D3BF |
H U+0048 | 𝐇 U+1D407 | 1D3BF |
I U+0049 | 𝐈 U+1D408 | 1D3BF |
J U+004A | 𝐉 U+1D409 | 1D3BF |
K U+004B | 𝐊 U+1D40A | 1D3BF |
L U+004C | 𝐋 U+1D40B | 1D3BF |
M U+004D | 𝐌 U+1D40C | 1D3BF |
N U+004E | 𝐍 U+1D40D | 1D3BF |
O U+004F | 𝐎 U+1D40E | 1D3BF |
P U+0050 | 𝐏 U+1D40F | 1D3BF |
Q U+0051 | 𝐐 U+1D410 | 1D3BF |
R U+0052 | 𝐑 U+1D411 | 1D3BF |
S U+0053 | 𝐒 U+1D412 | 1D3BF |
T U+0054 | 𝐓 U+1D413 | 1D3BF |
U U+0055 | 𝐔 U+1D414 | 1D3BF |
V U+0056 | 𝐕 U+1D415 | 1D3BF |
W U+0057 | 𝐖 U+1D416 | 1D3BF |
X U+0058 | 𝐗 U+1D417 | 1D3BF |
Y U+0059 | 𝐘 U+1D418 | 1D3BF |
Z U+005A | 𝐙 U+1D419 | 1D3BF |
a U+0061 | 𝐚 U+1D41A | 1D3B9 |
b U+0062 | 𝐛 U+1D41B | 1D3B9 |
c U+0063 | 𝐜 U+1D41C | 1D3B9 |
d U+0064 | 𝐝 U+1D41D | 1D3B9 |
e U+0065 | 𝐞 U+1D41E | 1D3B9 |
f U+0066 | 𝐟 U+1D41F | 1D3B9 |
g U+0067 | 𝐠 U+1D420 | 1D3B9 |
h U+0068 | 𝐡 U+1D421 | 1D3B9 |
i U+0069 | 𝐢 U+1D422 | 1D3B9 |
j U+006A | 𝐣 U+1D423 | 1D3B9 |
k U+006B | 𝐤 U+1D424 | 1D3B9 |
l U+006C | 𝐥 U+1D425 | 1D3B9 |
m U+006D | 𝐦 U+1D426 | 1D3B9 |
n U+006E | 𝐧 U+1D427 | 1D3B9 |
o U+006F | 𝐨 U+1D428 | 1D3B9 |
p U+0070 | 𝐩 U+1D429 | 1D3B9 |
q U+0071 | 𝐪 U+1D42A | 1D3B9 |
r U+0072 | 𝐫 U+1D42B | 1D3B9 |
s U+0073 | 𝐬 U+1D42C | 1D3B9 |
t U+0074 | 𝐭 U+1D42D | 1D3B9 |
u U+0075 | 𝐮 U+1D42E | 1D3B9 |
v U+0076 | 𝐯 U+1D42F | 1D3B9 |
w U+0077 | 𝐰 U+1D430 | 1D3B9 |
x U+0078 | 𝐱 U+1D431 | 1D3B9 |
y U+0079 | 𝐲 U+1D432 | 1D3B9 |
z U+007A | 𝐳 U+1D433 | 1D3B9 |
Α U+0391 | 𝚨 U+1D6A8 | 1D317 |
Β U+0392 | 𝚩 U+1D6A9 | 1D317 |
Γ U+0393 | 𝚪 U+1D6AA | 1D317 |
Δ U+0394 | 𝚫 U+1D6AB | 1D317 |
Ε U+0395 | 𝚬 U+1D6AC | 1D317 |
Ζ U+0396 | 𝚭 U+1D6AD | 1D317 |
Η U+0397 | 𝚮 U+1D6AE | 1D317 |
Θ U+0398 | 𝚯 U+1D6AF | 1D317 |
Ι U+0399 | 𝚰 U+1D6B0 | 1D317 |
Κ U+039A | 𝚱 U+1D6B1 | 1D317 |
Λ U+039B | 𝚲 U+1D6B2 | 1D317 |
Μ U+039C | 𝚳 U+1D6B3 | 1D317 |
Ν U+039D | 𝚴 U+1D6B4 | 1D317 |
Ξ U+039E | 𝚵 U+1D6B5 | 1D317 |
Ο U+039F | 𝚶 U+1D6B6 | 1D317 |
Π U+03A0 | 𝚷 U+1D6B7 | 1D317 |
Ρ U+03A1 | 𝚸 U+1D6B8 | 1D317 |
ϴ U+03F4 | 𝚹 U+1D6B9 | 1D2C5 |
Σ U+03A3 | 𝚺 U+1D6BA | 1D317 |
Τ U+03A4 | 𝚻 U+1D6BB | 1D317 |
Υ U+03A5 | 𝚼 U+1D6BC | 1D317 |
Φ U+03A6 | 𝚽 U+1D6BD | 1D317 |
Χ U+03A7 | 𝚾 U+1D6BE | 1D317 |
Ψ U+03A8 | 𝚿 U+1D6BF | 1D317 |
Ω U+03A9 | 𝛀 U+1D6C0 | 1D317 |
∇ U+2207 | 𝛁 U+1D6C1 | 1B4BA |
α U+03B1 | 𝛂 U+1D6C2 | 1D311 |
β U+03B2 | 𝛃 U+1D6C3 | 1D311 |
γ U+03B3 | 𝛄 U+1D6C4 | 1D311 |
δ U+03B4 | 𝛅 U+1D6C5 | 1D311 |
ε U+03B5 | 𝛆 U+1D6C6 | 1D311 |
ζ U+03B6 | 𝛇 U+1D6C7 | 1D311 |
η U+03B7 | 𝛈 U+1D6C8 | 1D311 |
θ U+03B8 | 𝛉 U+1D6C9 | 1D311 |
ι U+03B9 | 𝛊 U+1D6CA | 1D311 |
κ U+03BA | 𝛋 U+1D6CB | 1D311 |
λ U+03BB | 𝛌 U+1D6CC | 1D311 |
μ U+03BC | 𝛍 U+1D6CD | 1D311 |
ν U+03BD | 𝛎 U+1D6CE | 1D311 |
ξ U+03BE | 𝛏 U+1D6CF | 1D311 |
ο U+03BF | 𝛐 U+1D6D0 | 1D311 |
π U+03C0 | 𝛑 U+1D6D1 | 1D311 |
ρ U+03C1 | 𝛒 U+1D6D2 | 1D311 |
ς U+03C2 | 𝛓 U+1D6D3 | 1D311 |
σ U+03C3 | 𝛔 U+1D6D4 | 1D311 |
τ U+03C4 | 𝛕 U+1D6D5 | 1D311 |
υ U+03C5 | 𝛖 U+1D6D6 | 1D311 |
φ U+03C6 | 𝛗 U+1D6D7 | 1D311 |
χ U+03C7 | 𝛘 U+1D6D8 | 1D311 |
ψ U+03C8 | 𝛙 U+1D6D9 | 1D311 |
ω U+03C9 | 𝛚 U+1D6DA | 1D311 |
∂ U+2202 | 𝛛 U+1D6DB | 1B4D9 |
ϵ U+03F5 | 𝛜 U+1D6DC | 1D2E7 |
ϑ U+03D1 | 𝛝 U+1D6DD | 1D30C |
ϰ U+03F0 | 𝛞 U+1D6DE | 1D2EE |
ϕ U+03D5 | 𝛟 U+1D6DF | 1D30A |
ϱ U+03F1 | 𝛠 U+1D6E0 | 1D2EF |
ϖ U+03D6 | 𝛡 U+1D6E1 | 1D30B |
Ϝ U+03DC | 𝟊 U+1D7CA | 1D3EE |
ϝ U+03DD | 𝟋 U+1D7CB | 1D3EE |
0 U+0030 | 𝟎 U+1D7CE | 1D79E |
1 U+0031 | 𝟏 U+1D7CF | 1D79E |
2 U+0032 | 𝟐 U+1D7D0 | 1D79E |
3 U+0033 | 𝟑 U+1D7D1 | 1D79E |
4 U+0034 | 𝟒 U+1D7D2 | 1D79E |
5 U+0035 | 𝟓 U+1D7D3 | 1D79E |
6 U+0036 | 𝟔 U+1D7D4 | 1D79E |
7 U+0037 | 𝟕 U+1D7D5 | 1D79E |
8 U+0038 | 𝟖 U+1D7D6 | 1D79E |
9 U+0039 | 𝟗 U+1D7D7 | 1D79E |
fraktur
mappingsOriginal | fraktur | Δcode point |
---|---|---|
A U+0041 | 𝔄 U+1D504 | 1D4C3 |
B U+0042 | 𝔅 U+1D505 | 1D4C3 |
C U+0043 | ℭ U+0212D | 20EA |
D U+0044 | 𝔇 U+1D507 | 1D4C3 |
E U+0045 | 𝔈 U+1D508 | 1D4C3 |
F U+0046 | 𝔉 U+1D509 | 1D4C3 |
G U+0047 | 𝔊 U+1D50A | 1D4C3 |
H U+0048 | ℌ U+0210C | 20C4 |
I U+0049 | ℑ U+02111 | 20C8 |
J U+004A | 𝔍 U+1D50D | 1D4C3 |
K U+004B | 𝔎 U+1D50E | 1D4C3 |
L U+004C | 𝔏 U+1D50F | 1D4C3 |
M U+004D | 𝔐 U+1D510 | 1D4C3 |
N U+004E | 𝔑 U+1D511 | 1D4C3 |
O U+004F | 𝔒 U+1D512 | 1D4C3 |
P U+0050 | 𝔓 U+1D513 | 1D4C3 |
Q U+0051 | 𝔔 U+1D514 | 1D4C3 |
R U+0052 | ℜ U+0211C | 20CA |
S U+0053 | 𝔖 U+1D516 | 1D4C3 |
T U+0054 | 𝔗 U+1D517 | 1D4C3 |
U U+0055 | 𝔘 U+1D518 | 1D4C3 |
V U+0056 | 𝔙 U+1D519 | 1D4C3 |
W U+0057 | 𝔚 U+1D51A | 1D4C3 |
X U+0058 | 𝔛 U+1D51B | 1D4C3 |
Y U+0059 | 𝔜 U+1D51C | 1D4C3 |
Z U+005A | ℨ U+02128 | 20CE |
a U+0061 | 𝔞 U+1D51E | 1D4BD |
b U+0062 | 𝔟 U+1D51F | 1D4BD |
c U+0063 | 𝔠 U+1D520 | 1D4BD |
d U+0064 | 𝔡 U+1D521 | 1D4BD |
e U+0065 | 𝔢 U+1D522 | 1D4BD |
f U+0066 | 𝔣 U+1D523 | 1D4BD |
g U+0067 | 𝔤 U+1D524 | 1D4BD |
h U+0068 | 𝔥 U+1D525 | 1D4BD |
i U+0069 | 𝔦 U+1D526 | 1D4BD |
j U+006A | 𝔧 U+1D527 | 1D4BD |
k U+006B | 𝔨 U+1D528 | 1D4BD |
l U+006C | 𝔩 U+1D529 | 1D4BD |
m U+006D | 𝔪 U+1D52A | 1D4BD |
n U+006E | 𝔫 U+1D52B | 1D4BD |
o U+006F | 𝔬 U+1D52C | 1D4BD |
p U+0070 | 𝔭 U+1D52D | 1D4BD |
q U+0071 | 𝔮 U+1D52E | 1D4BD |
r U+0072 | 𝔯 U+1D52F | 1D4BD |
s U+0073 | 𝔰 U+1D530 | 1D4BD |
t U+0074 | 𝔱 U+1D531 | 1D4BD |
u U+0075 | 𝔲 U+1D532 | 1D4BD |
v U+0076 | 𝔳 U+1D533 | 1D4BD |
w U+0077 | 𝔴 U+1D534 | 1D4BD |
x U+0078 | 𝔵 U+1D535 | 1D4BD |
y U+0079 | 𝔶 U+1D536 | 1D4BD |
z U+007A | 𝔷 U+1D537 | 1D4BD |
script
mappingsOriginal | script | Δcode point |
---|---|---|
A U+0041 | 𝒜 U+1D49C | 1D45B |
B U+0042 | ℬ U+0212C | 20EA |
C U+0043 | 𝒞 U+1D49E | 1D45B |
D U+0044 | 𝒟 U+1D49F | 1D45B |
E U+0045 | ℰ U+02130 | 20EB |
F U+0046 | ℱ U+02131 | 20EB |
G U+0047 | 𝒢 U+1D4A2 | 1D45B |
H U+0048 | ℋ U+0210B | 20C3 |
I U+0049 | ℐ U+02110 | 20C7 |
J U+004A | 𝒥 U+1D4A5 | 1D45B |
K U+004B | 𝒦 U+1D4A6 | 1D45B |
L U+004C | ℒ U+02112 | 20C6 |
M U+004D | ℳ U+02133 | 20E6 |
N U+004E | 𝒩 U+1D4A9 | 1D45B |
O U+004F | 𝒪 U+1D4AA | 1D45B |
P U+0050 | 𝒫 U+1D4AB | 1D45B |
Q U+0051 | 𝒬 U+1D4AC | 1D45B |
R U+0052 | ℛ U+0211B | 20C9 |
S U+0053 | 𝒮 U+1D4AE | 1D45B |
T U+0054 | 𝒯 U+1D4AF | 1D45B |
U U+0055 | 𝒰 U+1D4B0 | 1D45B |
V U+0056 | 𝒱 U+1D4B1 | 1D45B |
W U+0057 | 𝒲 U+1D4B2 | 1D45B |
X U+0058 | 𝒳 U+1D4B3 | 1D45B |
Y U+0059 | 𝒴 U+1D4B4 | 1D45B |
Z U+005A | 𝒵 U+1D4B5 | 1D45B |
a U+0061 | 𝒶 U+1D4B6 | 1D455 |
b U+0062 | 𝒷 U+1D4B7 | 1D455 |
c U+0063 | 𝒸 U+1D4B8 | 1D455 |
d U+0064 | 𝒹 U+1D4B9 | 1D455 |
e U+0065 | ℯ U+0212F | 20CA |
f U+0066 | 𝒻 U+1D4BB | 1D455 |
g U+0067 | ℊ U+0210A | 20A3 |
h U+0068 | 𝒽 U+1D4BD | 1D455 |
i U+0069 | 𝒾 U+1D4BE | 1D455 |
j U+006A | 𝒿 U+1D4BF | 1D455 |
k U+006B | 𝓀 U+1D4C0 | 1D455 |
l U+006C | 𝓁 U+1D4C1 | 1D455 |
m U+006D | 𝓂 U+1D4C2 | 1D455 |
n U+006E | 𝓃 U+1D4C3 | 1D455 |
o U+006F | ℴ U+02134 | 20C5 |
p U+0070 | 𝓅 U+1D4C5 | 1D455 |
q U+0071 | 𝓆 U+1D4C6 | 1D455 |
r U+0072 | 𝓇 U+1D4C7 | 1D455 |
s U+0073 | 𝓈 U+1D4C8 | 1D455 |
t U+0074 | 𝓉 U+1D4C9 | 1D455 |
u U+0075 | 𝓊 U+1D4CA | 1D455 |
v U+0076 | 𝓋 U+1D4CB | 1D455 |
w U+0077 | 𝓌 U+1D4CC | 1D455 |
x U+0078 | 𝓍 U+1D4CD | 1D455 |
y U+0079 | 𝓎 U+1D4CE | 1D455 |
z U+007A | 𝓏 U+1D4CF | 1D455 |
monospace
mappingsOriginal | monospace | Δcode point |
---|---|---|
A U+0041 | 𝙰 U+1D670 | 1D62F |
B U+0042 | 𝙱 U+1D671 | 1D62F |
C U+0043 | 𝙲 U+1D672 | 1D62F |
D U+0044 | 𝙳 U+1D673 | 1D62F |
E U+0045 | 𝙴 U+1D674 | 1D62F |
F U+0046 | 𝙵 U+1D675 | 1D62F |
G U+0047 | 𝙶 U+1D676 | 1D62F |
H U+0048 | 𝙷 U+1D677 | 1D62F |
I U+0049 | 𝙸 U+1D678 | 1D62F |
J U+004A | 𝙹 U+1D679 | 1D62F |
K U+004B | 𝙺 U+1D67A | 1D62F |
L U+004C | 𝙻 U+1D67B | 1D62F |
M U+004D | 𝙼 U+1D67C | 1D62F |
N U+004E | 𝙽 U+1D67D | 1D62F |
O U+004F | 𝙾 U+1D67E | 1D62F |
P U+0050 | 𝙿 U+1D67F | 1D62F |
Q U+0051 | 𝚀 U+1D680 | 1D62F |
R U+0052 | 𝚁 U+1D681 | 1D62F |
S U+0053 | 𝚂 U+1D682 | 1D62F |
T U+0054 | 𝚃 U+1D683 | 1D62F |
U U+0055 | 𝚄 U+1D684 | 1D62F |
V U+0056 | 𝚅 U+1D685 | 1D62F |
W U+0057 | 𝚆 U+1D686 | 1D62F |
X U+0058 | 𝚇 U+1D687 | 1D62F |
Y U+0059 | 𝚈 U+1D688 | 1D62F |
Z U+005A | 𝚉 U+1D689 | 1D62F |
a U+0061 | 𝚊 U+1D68A | 1D629 |
b U+0062 | 𝚋 U+1D68B | 1D629 |
c U+0063 | 𝚌 U+1D68C | 1D629 |
d U+0064 | 𝚍 U+1D68D | 1D629 |
e U+0065 | 𝚎 U+1D68E | 1D629 |
f U+0066 | 𝚏 U+1D68F | 1D629 |
g U+0067 | 𝚐 U+1D690 | 1D629 |
h U+0068 | 𝚑 U+1D691 | 1D629 |
i U+0069 | 𝚒 U+1D692 | 1D629 |
j U+006A | 𝚓 U+1D693 | 1D629 |
k U+006B | 𝚔 U+1D694 | 1D629 |
l U+006C | 𝚕 U+1D695 | 1D629 |
m U+006D | 𝚖 U+1D696 | 1D629 |
n U+006E | 𝚗 U+1D697 | 1D629 |
o U+006F | 𝚘 U+1D698 | 1D629 |
p U+0070 | 𝚙 U+1D699 | 1D629 |
q U+0071 | 𝚚 U+1D69A | 1D629 |
r U+0072 | 𝚛 U+1D69B | 1D629 |
s U+0073 | 𝚜 U+1D69C | 1D629 |
t U+0074 | 𝚝 U+1D69D | 1D629 |
u U+0075 | 𝚞 U+1D69E | 1D629 |
v U+0076 | 𝚟 U+1D69F | 1D629 |
w U+0077 | 𝚠 U+1D6A0 | 1D629 |
x U+0078 | 𝚡 U+1D6A1 | 1D629 |
y U+0079 | 𝚢 U+1D6A2 | 1D629 |
z U+007A | 𝚣 U+1D6A3 | 1D629 |
0 U+0030 | 𝟶 U+1D7F6 | 1D7C6 |
1 U+0031 | 𝟷 U+1D7F7 | 1D7C6 |
2 U+0032 | 𝟸 U+1D7F8 | 1D7C6 |
3 U+0033 | 𝟹 U+1D7F9 | 1D7C6 |
4 U+0034 | 𝟺 U+1D7FA | 1D7C6 |
5 U+0035 | 𝟻 U+1D7FB | 1D7C6 |
6 U+0036 | 𝟼 U+1D7FC | 1D7C6 |
7 U+0037 | 𝟽 U+1D7FD | 1D7C6 |
8 U+0038 | 𝟾 U+1D7FE | 1D7C6 |
9 U+0039 | 𝟿 U+1D7FF | 1D7C6 |
initial
mappingsOriginal | initial | Δcode point |
---|---|---|
ب U+0628 | 𞸡 U+1EE21 | 1E7F9 |
ج U+062C | 𞸢 U+1EE22 | 1E7F6 |
ه U+0647 | 𞸤 U+1EE24 | 1E7DD |
ح U+062D | 𞸧 U+1EE27 | 1E7FA |
ي U+064A | 𞸩 U+1EE29 | 1E7DF |
ك U+0643 | 𞸪 U+1EE2A | 1E7E7 |
ل U+0644 | 𞸫 U+1EE2B | 1E7E7 |
م U+0645 | 𞸬 U+1EE2C | 1E7E7 |
ن U+0646 | 𞸭 U+1EE2D | 1E7E7 |
س U+0633 | 𞸮 U+1EE2E | 1E7FB |
ع U+0639 | 𞸯 U+1EE2F | 1E7F6 |
ف U+0641 | 𞸰 U+1EE30 | 1E7EF |
ص U+0635 | 𞸱 U+1EE31 | 1E7FC |
ق U+0642 | 𞸲 U+1EE32 | 1E7F0 |
ش U+0634 | 𞸴 U+1EE34 | 1E800 |
ت U+062A | 𞸵 U+1EE35 | 1E80B |
ث U+062B | 𞸶 U+1EE36 | 1E80B |
خ U+062E | 𞸷 U+1EE37 | 1E809 |
ض U+0636 | 𞸹 U+1EE39 | 1E803 |
غ U+063A | 𞸻 U+1EE3B | 1E801 |
sans-serif
mappingsOriginal | sans-serif | Δcode point |
---|---|---|
A U+0041 | 𝖠 U+1D5A0 | 1D55F |
B U+0042 | 𝖡 U+1D5A1 | 1D55F |
C U+0043 | 𝖢 U+1D5A2 | 1D55F |
D U+0044 | 𝖣 U+1D5A3 | 1D55F |
E U+0045 | 𝖤 U+1D5A4 | 1D55F |
F U+0046 | 𝖥 U+1D5A5 | 1D55F |
G U+0047 | 𝖦 U+1D5A6 | 1D55F |
H U+0048 | 𝖧 U+1D5A7 | 1D55F |
I U+0049 | 𝖨 U+1D5A8 | 1D55F |
J U+004A | 𝖩 U+1D5A9 | 1D55F |
K U+004B | 𝖪 U+1D5AA | 1D55F |
L U+004C | 𝖫 U+1D5AB | 1D55F |
M U+004D | 𝖬 U+1D5AC | 1D55F |
N U+004E | 𝖭 U+1D5AD | 1D55F |
O U+004F | 𝖮 U+1D5AE | 1D55F |
P U+0050 | 𝖯 U+1D5AF | 1D55F |
Q U+0051 | 𝖰 U+1D5B0 | 1D55F |
R U+0052 | 𝖱 U+1D5B1 | 1D55F |
S U+0053 | 𝖲 U+1D5B2 | 1D55F |
T U+0054 | 𝖳 U+1D5B3 | 1D55F |
U U+0055 | 𝖴 U+1D5B4 | 1D55F |
V U+0056 | 𝖵 U+1D5B5 | 1D55F |
W U+0057 | 𝖶 U+1D5B6 | 1D55F |
X U+0058 | 𝖷 U+1D5B7 | 1D55F |
Y U+0059 | 𝖸 U+1D5B8 | 1D55F |
Z U+005A | 𝖹 U+1D5B9 | 1D55F |
a U+0061 | 𝖺 U+1D5BA | 1D559 |
b U+0062 | 𝖻 U+1D5BB | 1D559 |
c U+0063 | 𝖼 U+1D5BC | 1D559 |
d U+0064 | 𝖽 U+1D5BD | 1D559 |
e U+0065 | 𝖾 U+1D5BE | 1D559 |
f U+0066 | 𝖿 U+1D5BF | 1D559 |
g U+0067 | 𝗀 U+1D5C0 | 1D559 |
h U+0068 | 𝗁 U+1D5C1 | 1D559 |
i U+0069 | 𝗂 U+1D5C2 | 1D559 |
j U+006A | 𝗃 U+1D5C3 | 1D559 |
k U+006B | 𝗄 U+1D5C4 | 1D559 |
l U+006C | 𝗅 U+1D5C5 | 1D559 |
m U+006D | 𝗆 U+1D5C6 | 1D559 |
n U+006E | 𝗇 U+1D5C7 | 1D559 |
o U+006F | 𝗈 U+1D5C8 | 1D559 |
p U+0070 | 𝗉 U+1D5C9 | 1D559 |
q U+0071 | 𝗊 U+1D5CA | 1D559 |
r U+0072 | 𝗋 U+1D5CB | 1D559 |
s U+0073 | 𝗌 U+1D5CC | 1D559 |
t U+0074 | 𝗍 U+1D5CD | 1D559 |
u U+0075 | 𝗎 U+1D5CE | 1D559 |
v U+0076 | 𝗏 U+1D5CF | 1D559 |
w U+0077 | 𝗐 U+1D5D0 | 1D559 |
x U+0078 | 𝗑 U+1D5D1 | 1D559 |
y U+0079 | 𝗒 U+1D5D2 | 1D559 |
z U+007A | 𝗓 U+1D5D3 | 1D559 |
0 U+0030 | 𝟢 U+1D7E2 | 1D7B2 |
1 U+0031 | 𝟣 U+1D7E3 | 1D7B2 |
2 U+0032 | 𝟤 U+1D7E4 | 1D7B2 |
3 U+0033 | 𝟥 U+1D7E5 | 1D7B2 |
4 U+0034 | 𝟦 U+1D7E6 | 1D7B2 |
5 U+0035 | 𝟧 U+1D7E7 | 1D7B2 |
6 U+0036 | 𝟨 U+1D7E8 | 1D7B2 |
7 U+0037 | 𝟩 U+1D7E9 | 1D7B2 |
8 U+0038 | 𝟪 U+1D7EA | 1D7B2 |
9 U+0039 | 𝟫 U+1D7EB | 1D7B2 |
double-struck
mappingsOriginal | double-struck | Δcode point |
---|---|---|
A U+0041 | 𝔸 U+1D538 | 1D4F7 |
B U+0042 | 𝔹 U+1D539 | 1D4F7 |
C U+0043 | ℂ U+02102 | 20BF |
D U+0044 | 𝔻 U+1D53B | 1D4F7 |
E U+0045 | 𝔼 U+1D53C | 1D4F7 |
F U+0046 | 𝔽 U+1D53D | 1D4F7 |
G U+0047 | 𝔾 U+1D53E | 1D4F7 |
H U+0048 | ℍ U+0210D | 20C5 |
I U+0049 | 𝕀 U+1D540 | 1D4F7 |
J U+004A | 𝕁 U+1D541 | 1D4F7 |
K U+004B | 𝕂 U+1D542 | 1D4F7 |
L U+004C | 𝕃 U+1D543 | 1D4F7 |
M U+004D | 𝕄 U+1D544 | 1D4F7 |
N U+004E | ℕ U+02115 | 20C7 |
O U+004F | 𝕆 U+1D546 | 1D4F7 |
P U+0050 | ℙ U+02119 | 20C9 |
Q U+0051 | ℚ U+0211A | 20C9 |
R U+0052 | ℝ U+0211D | 20CB |
S U+0053 | 𝕊 U+1D54A | 1D4F7 |
T U+0054 | 𝕋 U+1D54B | 1D4F7 |
U U+0055 | 𝕌 U+1D54C | 1D4F7 |
V U+0056 | 𝕍 U+1D54D | 1D4F7 |
W U+0057 | 𝕎 U+1D54E | 1D4F7 |
X U+0058 | 𝕏 U+1D54F | 1D4F7 |
Y U+0059 | 𝕐 U+1D550 | 1D4F7 |
Z U+005A | ℤ U+02124 | 20CA |
a U+0061 | 𝕒 U+1D552 | 1D4F1 |
b U+0062 | 𝕓 U+1D553 | 1D4F1 |
c U+0063 | 𝕔 U+1D554 | 1D4F1 |
d U+0064 | 𝕕 U+1D555 | 1D4F1 |
e U+0065 | 𝕖 U+1D556 | 1D4F1 |
f U+0066 | 𝕗 U+1D557 | 1D4F1 |
g U+0067 | 𝕘 U+1D558 | 1D4F1 |
h U+0068 | 𝕙 U+1D559 | 1D4F1 |
i U+0069 | 𝕚 U+1D55A | 1D4F1 |
j U+006A | 𝕛 U+1D55B | 1D4F1 |
k U+006B | 𝕜 U+1D55C | 1D4F1 |
l U+006C | 𝕝 U+1D55D | 1D4F1 |
m U+006D | 𝕞 U+1D55E | 1D4F1 |
n U+006E | 𝕟 U+1D55F | 1D4F1 |
o U+006F | 𝕠 U+1D560 | 1D4F1 |
p U+0070 | 𝕡 U+1D561 | 1D4F1 |
q U+0071 | 𝕢 U+1D562 | 1D4F1 |
r U+0072 | 𝕣 U+1D563 | 1D4F1 |
s U+0073 | 𝕤 U+1D564 | 1D4F1 |
t U+0074 | 𝕥 U+1D565 | 1D4F1 |
u U+0075 | 𝕦 U+1D566 | 1D4F1 |
v U+0076 | 𝕧 U+1D567 | 1D4F1 |
w U+0077 | 𝕨 U+1D568 | 1D4F1 |
x U+0078 | 𝕩 U+1D569 | 1D4F1 |
y U+0079 | 𝕪 U+1D56A | 1D4F1 |
z U+007A | 𝕫 U+1D56B | 1D4F1 |
0 U+0030 | 𝟘 U+1D7D8 | 1D7A8 |
1 U+0031 | 𝟙 U+1D7D9 | 1D7A8 |
2 U+0032 | 𝟚 U+1D7DA | 1D7A8 |
3 U+0033 | 𝟛 U+1D7DB | 1D7A8 |
4 U+0034 | 𝟜 U+1D7DC | 1D7A8 |
5 U+0035 | 𝟝 U+1D7DD | 1D7A8 |
6 U+0036 | 𝟞 U+1D7DE | 1D7A8 |
7 U+0037 | 𝟟 U+1D7DF | 1D7A8 |
8 U+0038 | 𝟠 U+1D7E0 | 1D7A8 |
9 U+0039 | 𝟡 U+1D7E1 | 1D7A8 |
ب U+0628 | 𞺡 U+1EEA1 | 1E879 |
ج U+062C | 𞺢 U+1EEA2 | 1E876 |
د U+062F | 𞺣 U+1EEA3 | 1E874 |
و U+0648 | 𞺥 U+1EEA5 | 1E85D |
ز U+0632 | 𞺦 U+1EEA6 | 1E874 |
ح U+062D | 𞺧 U+1EEA7 | 1E87A |
ط U+0637 | 𞺨 U+1EEA8 | 1E871 |
ي U+064A | 𞺩 U+1EEA9 | 1E85F |
ل U+0644 | 𞺫 U+1EEAB | 1E867 |
م U+0645 | 𞺬 U+1EEAC | 1E867 |
ن U+0646 | 𞺭 U+1EEAD | 1E867 |
س U+0633 | 𞺮 U+1EEAE | 1E87B |
ع U+0639 | 𞺯 U+1EEAF | 1E876 |
ف U+0641 | 𞺰 U+1EEB0 | 1E86F |
ص U+0635 | 𞺱 U+1EEB1 | 1E87C |
ق U+0642 | 𞺲 U+1EEB2 | 1E870 |
ر U+0631 | 𞺳 U+1EEB3 | 1E882 |
ش U+0634 | 𞺴 U+1EEB4 | 1E880 |
ت U+062A | 𞺵 U+1EEB5 | 1E88B |
ث U+062B | 𞺶 U+1EEB6 | 1E88B |
خ U+062E | 𞺷 U+1EEB7 | 1E889 |
ذ U+0630 | 𞺸 U+1EEB8 | 1E888 |
ض U+0636 | 𞺹 U+1EEB9 | 1E883 |
ظ U+0638 | 𞺺 U+1EEBA | 1E882 |
غ U+063A | 𞺻 U+1EEBB | 1E881 |
looped
mappingsOriginal | looped | Δcode point |
---|---|---|
ا U+0627 | 𞺀 U+1EE80 | 1E859 |
ب U+0628 | 𞺁 U+1EE81 | 1E859 |
ج U+062C | 𞺂 U+1EE82 | 1E856 |
د U+062F | 𞺃 U+1EE83 | 1E854 |
ه U+0647 | 𞺄 U+1EE84 | 1E83D |
و U+0648 | 𞺅 U+1EE85 | 1E83D |
ز U+0632 | 𞺆 U+1EE86 | 1E854 |
ح U+062D | 𞺇 U+1EE87 | 1E85A |
ط U+0637 | 𞺈 U+1EE88 | 1E851 |
ي U+064A | 𞺉 U+1EE89 | 1E83F |
ل U+0644 | 𞺋 U+1EE8B | 1E847 |
م U+0645 | 𞺌 U+1EE8C | 1E847 |
ن U+0646 | 𞺍 U+1EE8D | 1E847 |
س U+0633 | 𞺎 U+1EE8E | 1E85B |
ع U+0639 | 𞺏 U+1EE8F | 1E856 |
ف U+0641 | 𞺐 U+1EE90 | 1E84F |
ص U+0635 | 𞺑 U+1EE91 | 1E85C |
ق U+0642 | 𞺒 U+1EE92 | 1E850 |
ر U+0631 | 𞺓 U+1EE93 | 1E862 |
ش U+0634 | 𞺔 U+1EE94 | 1E860 |
ت U+062A | 𞺕 U+1EE95 | 1E86B |
ث U+062B | 𞺖 U+1EE96 | 1E86B |
خ U+062E | 𞺗 U+1EE97 | 1E869 |
ذ U+0630 | 𞺘 U+1EE98 | 1E868 |
ض U+0636 | 𞺙 U+1EE99 | 1E863 |
ظ U+0638 | 𞺚 U+1EE9A | 1E862 |
غ U+063A | 𞺛 U+1EE9B | 1E861 |
stretched
mappingsOriginal | stretched | Δcode point |
---|---|---|
ب U+0628 | 𞹡 U+1EE61 | 1E839 |
ج U+062C | 𞹢 U+1EE62 | 1E836 |
ه U+0647 | 𞹤 U+1EE64 | 1E81D |
ح U+062D | 𞹧 U+1EE67 | 1E83A |
ط U+0637 | 𞹨 U+1EE68 | 1E831 |
ي U+064A | 𞹩 U+1EE69 | 1E81F |
ك U+0643 | 𞹪 U+1EE6A | 1E827 |
م U+0645 | 𞹬 U+1EE6C | 1E827 |
ن U+0646 | 𞹭 U+1EE6D | 1E827 |
س U+0633 | 𞹮 U+1EE6E | 1E83B |
ع U+0639 | 𞹯 U+1EE6F | 1E836 |
ف U+0641 | 𞹰 U+1EE70 | 1E82F |
ص U+0635 | 𞹱 U+1EE71 | 1E83C |
ق U+0642 | 𞹲 U+1EE72 | 1E830 |
ش U+0634 | 𞹴 U+1EE74 | 1E840 |
ت U+062A | 𞹵 U+1EE75 | 1E84B |
ث U+062B | 𞹶 U+1EE76 | 1E84B |
خ U+062E | 𞹷 U+1EE77 | 1E849 |
ض U+0636 | 𞹹 U+1EE79 | 1E843 |
ظ U+0638 | 𞹺 U+1EE7A | 1E842 |
غ U+063A | 𞹻 U+1EE7B | 1E841 |
ٮ U+066E | 𞹼 U+1EE7C | 1E80E |
ڡ U+06A1 | 𞹾 U+1EE7E | 1E7DD |
italic
mappingsOriginal | italic | Δcode point |
---|---|---|
A U+0041 | 𝐴 U+1D434 | 1D3F3 |
B U+0042 | 𝐵 U+1D435 | 1D3F3 |
C U+0043 | 𝐶 U+1D436 | 1D3F3 |
D U+0044 | 𝐷 U+1D437 | 1D3F3 |
E U+0045 | 𝐸 U+1D438 | 1D3F3 |
F U+0046 | 𝐹 U+1D439 | 1D3F3 |
G U+0047 | 𝐺 U+1D43A | 1D3F3 |
H U+0048 | 𝐻 U+1D43B | 1D3F3 |
I U+0049 | 𝐼 U+1D43C | 1D3F3 |
J U+004A | 𝐽 U+1D43D | 1D3F3 |
K U+004B | 𝐾 U+1D43E | 1D3F3 |
L U+004C | 𝐿 U+1D43F | 1D3F3 |
M U+004D | 𝑀 U+1D440 | 1D3F3 |
N U+004E | 𝑁 U+1D441 | 1D3F3 |
O U+004F | 𝑂 U+1D442 | 1D3F3 |
P U+0050 | 𝑃 U+1D443 | 1D3F3 |
Q U+0051 | 𝑄 U+1D444 | 1D3F3 |
R U+0052 | 𝑅 U+1D445 | 1D3F3 |
S U+0053 | 𝑆 U+1D446 | 1D3F3 |
T U+0054 | 𝑇 U+1D447 | 1D3F3 |
U U+0055 | 𝑈 U+1D448 | 1D3F3 |
V U+0056 | 𝑉 U+1D449 | 1D3F3 |
W U+0057 | 𝑊 U+1D44A | 1D3F3 |
X U+0058 | 𝑋 U+1D44B | 1D3F3 |
Y U+0059 | 𝑌 U+1D44C | 1D3F3 |
Z U+005A | 𝑍 U+1D44D | 1D3F3 |
a U+0061 | 𝑎 U+1D44E | 1D3ED |
b U+0062 | 𝑏 U+1D44F | 1D3ED |
c U+0063 | 𝑐 U+1D450 | 1D3ED |
d U+0064 | 𝑑 U+1D451 | 1D3ED |
e U+0065 | 𝑒 U+1D452 | 1D3ED |
f U+0066 | 𝑓 U+1D453 | 1D3ED |
g U+0067 | 𝑔 U+1D454 | 1D3ED |
h U+0068 | ℎ U+0210E | 20A6 |
i U+0069 | 𝑖 U+1D456 | 1D3ED |
j U+006A | 𝑗 U+1D457 | 1D3ED |
k U+006B | 𝑘 U+1D458 | 1D3ED |
l U+006C | 𝑙 U+1D459 | 1D3ED |
m U+006D | 𝑚 U+1D45A | 1D3ED |
n U+006E | 𝑛 U+1D45B | 1D3ED |
o U+006F | 𝑜 U+1D45C | 1D3ED |
p U+0070 | 𝑝 U+1D45D | 1D3ED |
q U+0071 | 𝑞 U+1D45E | 1D3ED |
r U+0072 | 𝑟 U+1D45F | 1D3ED |
s U+0073 | 𝑠 U+1D460 | 1D3ED |
t U+0074 | 𝑡 U+1D461 | 1D3ED |
u U+0075 | 𝑢 U+1D462 | 1D3ED |
v U+0076 | 𝑣 U+1D463 | 1D3ED |
w U+0077 | 𝑤 U+1D464 | 1D3ED |
x U+0078 | 𝑥 U+1D465 | 1D3ED |
y U+0079 | 𝑦 U+1D466 | 1D3ED |
z U+007A | 𝑧 U+1D467 | 1D3ED |
ı U+0131 | 𝚤 U+1D6A4 | 1D573 |
ȷ U+0237 | 𝚥 U+1D6A5 | 1D46E |
Α U+0391 | 𝛢 U+1D6E2 | 1D351 |
Β U+0392 | 𝛣 U+1D6E3 | 1D351 |
Γ U+0393 | 𝛤 U+1D6E4 | 1D351 |
Δ U+0394 | 𝛥 U+1D6E5 | 1D351 |
Ε U+0395 | 𝛦 U+1D6E6 | 1D351 |
Ζ U+0396 | 𝛧 U+1D6E7 | 1D351 |
Η U+0397 | 𝛨 U+1D6E8 | 1D351 |
Θ U+0398 | 𝛩 U+1D6E9 | 1D351 |
Ι U+0399 | 𝛪 U+1D6EA | 1D351 |
Κ U+039A | 𝛫 U+1D6EB | 1D351 |
Λ U+039B | 𝛬 U+1D6EC | 1D351 |
Μ U+039C | 𝛭 U+1D6ED | 1D351 |
Ν U+039D | 𝛮 U+1D6EE | 1D351 |
Ξ U+039E | 𝛯 U+1D6EF | 1D351 |
Ο U+039F | 𝛰 U+1D6F0 | 1D351 |
Π U+03A0 | 𝛱 U+1D6F1 | 1D351 |
Ρ U+03A1 | 𝛲 U+1D6F2 | 1D351 |
ϴ U+03F4 | 𝛳 U+1D6F3 | 1D2FF |
Σ U+03A3 | 𝛴 U+1D6F4 | 1D351 |
Τ U+03A4 | 𝛵 U+1D6F5 | 1D351 |
Υ U+03A5 | 𝛶 U+1D6F6 | 1D351 |
Φ U+03A6 | 𝛷 U+1D6F7 | 1D351 |
Χ U+03A7 | 𝛸 U+1D6F8 | 1D351 |
Ψ U+03A8 | 𝛹 U+1D6F9 | 1D351 |
Ω U+03A9 | 𝛺 U+1D6FA | 1D351 |
∇ U+2207 | 𝛻 U+1D6FB | 1B4F4 |
α U+03B1 | 𝛼 U+1D6FC | 1D34B |
β U+03B2 | 𝛽 U+1D6FD | 1D34B |
γ U+03B3 | 𝛾 U+1D6FE | 1D34B |
δ U+03B4 | 𝛿 U+1D6FF | 1D34B |
ε U+03B5 | 𝜀 U+1D700 | 1D34B |
ζ U+03B6 | 𝜁 U+1D701 | 1D34B |
η U+03B7 | 𝜂 U+1D702 | 1D34B |
θ U+03B8 | 𝜃 U+1D703 | 1D34B |
ι U+03B9 | 𝜄 U+1D704 | 1D34B |
κ U+03BA | 𝜅 U+1D705 | 1D34B |
λ U+03BB | 𝜆 U+1D706 | 1D34B |
μ U+03BC | 𝜇 U+1D707 | 1D34B |
ν U+03BD | 𝜈 U+1D708 | 1D34B |
ξ U+03BE | 𝜉 U+1D709 | 1D34B |
ο U+03BF | 𝜊 U+1D70A | 1D34B |
π U+03C0 | 𝜋 U+1D70B | 1D34B |
ρ U+03C1 | 𝜌 U+1D70C | 1D34B |
ς U+03C2 | 𝜍 U+1D70D | 1D34B |
σ U+03C3 | 𝜎 U+1D70E | 1D34B |
τ U+03C4 | 𝜏 U+1D70F | 1D34B |
υ U+03C5 | 𝜐 U+1D710 | 1D34B |
φ U+03C6 | 𝜑 U+1D711 | 1D34B |
χ U+03C7 | 𝜒 U+1D712 | 1D34B |
ψ U+03C8 | 𝜓 U+1D713 | 1D34B |
ω U+03C9 | 𝜔 U+1D714 | 1D34B |
∂ U+2202 | 𝜕 U+1D715 | 1B513 |
ϵ U+03F5 | 𝜖 U+1D716 | 1D321 |
ϑ U+03D1 | 𝜗 U+1D717 | 1D346 |
ϰ U+03F0 | 𝜘 U+1D718 | 1D328 |
ϕ U+03D5 | 𝜙 U+1D719 | 1D344 |
ϱ U+03F1 | 𝜚 U+1D71A | 1D329 |
ϖ U+03D6 | 𝜛 U+1D71B | 1D345 |
bold-fraktur
mappingsOriginal | bold-fraktur | Δcode point |
---|---|---|
A U+0041 | 𝕬 U+1D56C | 1D52B |
B U+0042 | 𝕭 U+1D56D | 1D52B |
C U+0043 | 𝕮 U+1D56E | 1D52B |
D U+0044 | 𝕯 U+1D56F | 1D52B |
E U+0045 | 𝕰 U+1D570 | 1D52B |
F U+0046 | 𝕱 U+1D571 | 1D52B |
G U+0047 | 𝕲 U+1D572 | 1D52B |
H U+0048 | 𝕳 U+1D573 | 1D52B |
I U+0049 | 𝕴 U+1D574 | 1D52B |
J U+004A | 𝕵 U+1D575 | 1D52B |
K U+004B | 𝕶 U+1D576 | 1D52B |
L U+004C | 𝕷 U+1D577 | 1D52B |
M U+004D | 𝕸 U+1D578 | 1D52B |
N U+004E | 𝕹 U+1D579 | 1D52B |
O U+004F | 𝕺 U+1D57A | 1D52B |
P U+0050 | 𝕻 U+1D57B | 1D52B |
Q U+0051 | 𝕼 U+1D57C | 1D52B |
R U+0052 | 𝕽 U+1D57D | 1D52B |
S U+0053 | 𝕾 U+1D57E | 1D52B |
T U+0054 | 𝕿 U+1D57F | 1D52B |
U U+0055 | 𝖀 U+1D580 | 1D52B |
V U+0056 | 𝖁 U+1D581 | 1D52B |
W U+0057 | 𝖂 U+1D582 | 1D52B |
X U+0058 | 𝖃 U+1D583 | 1D52B |
Y U+0059 | 𝖄 U+1D584 | 1D52B |
Z U+005A | 𝖅 U+1D585 | 1D52B |
a U+0061 | 𝖆 U+1D586 | 1D525 |
b U+0062 | 𝖇 U+1D587 | 1D525 |
c U+0063 | 𝖈 U+1D588 | 1D525 |
d U+0064 | 𝖉 U+1D589 | 1D525 |
e U+0065 | 𝖊 U+1D58A | 1D525 |
f U+0066 | 𝖋 U+1D58B | 1D525 |
g U+0067 | 𝖌 U+1D58C | 1D525 |
h U+0068 | 𝖍 U+1D58D | 1D525 |
i U+0069 | 𝖎 U+1D58E | 1D525 |
j U+006A | 𝖏 U+1D58F | 1D525 |
k U+006B | 𝖐 U+1D590 | 1D525 |
l U+006C | 𝖑 U+1D591 | 1D525 |
m U+006D | 𝖒 U+1D592 | 1D525 |
n U+006E | 𝖓 U+1D593 | 1D525 |
o U+006F | 𝖔 U+1D594 | 1D525 |
p U+0070 | 𝖕 U+1D595 | 1D525 |
q U+0071 | 𝖖 U+1D596 | 1D525 |
r U+0072 | 𝖗 U+1D597 | 1D525 |
s U+0073 | 𝖘 U+1D598 | 1D525 |
t U+0074 | 𝖙 U+1D599 | 1D525 |
u U+0075 | 𝖚 U+1D59A | 1D525 |
v U+0076 | 𝖛 U+1D59B | 1D525 |
w U+0077 | 𝖜 U+1D59C | 1D525 |
x U+0078 | 𝖝 U+1D59D | 1D525 |
y U+0079 | 𝖞 U+1D59E | 1D525 |
z U+007A | 𝖟 U+1D59F | 1D525 |
sans-serif-bold-italic
mappingsOriginal | sans-serif-bold-italic | Δcode point |
---|---|---|
A U+0041 | 𝘼 U+1D63C | 1D5FB |
B U+0042 | 𝘽 U+1D63D | 1D5FB |
C U+0043 | 𝘾 U+1D63E | 1D5FB |
D U+0044 | 𝘿 U+1D63F | 1D5FB |
E U+0045 | 𝙀 U+1D640 | 1D5FB |
F U+0046 | 𝙁 U+1D641 | 1D5FB |
G U+0047 | 𝙂 U+1D642 | 1D5FB |
H U+0048 | 𝙃 U+1D643 | 1D5FB |
I U+0049 | 𝙄 U+1D644 | 1D5FB |
J U+004A | 𝙅 U+1D645 | 1D5FB |
K U+004B | 𝙆 U+1D646 | 1D5FB |
L U+004C | 𝙇 U+1D647 | 1D5FB |
M U+004D | 𝙈 U+1D648 | 1D5FB |
N U+004E | 𝙉 U+1D649 | 1D5FB |
O U+004F | 𝙊 U+1D64A | 1D5FB |
P U+0050 | 𝙋 U+1D64B | 1D5FB |
Q U+0051 | 𝙌 U+1D64C | 1D5FB |
R U+0052 | 𝙍 U+1D64D | 1D5FB |
S U+0053 | 𝙎 U+1D64E | 1D5FB |
T U+0054 | 𝙏 U+1D64F | 1D5FB |
U U+0055 | 𝙐 U+1D650 | 1D5FB |
V U+0056 | 𝙑 U+1D651 | 1D5FB |
W U+0057 | 𝙒 U+1D652 | 1D5FB |
X U+0058 | 𝙓 U+1D653 | 1D5FB |
Y U+0059 | 𝙔 U+1D654 | 1D5FB |
Z U+005A | 𝙕 U+1D655 | 1D5FB |
a U+0061 | 𝙖 U+1D656 | 1D5F5 |
b U+0062 | 𝙗 U+1D657 | 1D5F5 |
c U+0063 | 𝙘 U+1D658 | 1D5F5 |
d U+0064 | 𝙙 U+1D659 | 1D5F5 |
e U+0065 | 𝙚 U+1D65A | 1D5F5 |
f U+0066 | 𝙛 U+1D65B | 1D5F5 |
g U+0067 | 𝙜 U+1D65C | 1D5F5 |
h U+0068 | 𝙝 U+1D65D | 1D5F5 |
i U+0069 | 𝙞 U+1D65E | 1D5F5 |
j U+006A | 𝙟 U+1D65F | 1D5F5 |
k U+006B | 𝙠 U+1D660 | 1D5F5 |
l U+006C | 𝙡 U+1D661 | 1D5F5 |
m U+006D | 𝙢 U+1D662 | 1D5F5 |
n U+006E | 𝙣 U+1D663 | 1D5F5 |
o U+006F | 𝙤 U+1D664 | 1D5F5 |
p U+0070 | 𝙥 U+1D665 | 1D5F5 |
q U+0071 | 𝙦 U+1D666 | 1D5F5 |
r U+0072 | 𝙧 U+1D667 | 1D5F5 |
s U+0073 | 𝙨 U+1D668 | 1D5F5 |
t U+0074 | 𝙩 U+1D669 | 1D5F5 |
u U+0075 | 𝙪 U+1D66A | 1D5F5 |
v U+0076 | 𝙫 U+1D66B | 1D5F5 |
w U+0077 | 𝙬 U+1D66C | 1D5F5 |
x U+0078 | 𝙭 U+1D66D | 1D5F5 |
y U+0079 | 𝙮 U+1D66E | 1D5F5 |
z U+007A | 𝙯 U+1D66F | 1D5F5 |
Α U+0391 | 𝞐 U+1D790 | 1D3FF |
Β U+0392 | 𝞑 U+1D791 | 1D3FF |
Γ U+0393 | 𝞒 U+1D792 | 1D3FF |
Δ U+0394 | 𝞓 U+1D793 | 1D3FF |
Ε U+0395 | 𝞔 U+1D794 | 1D3FF |
Ζ U+0396 | 𝞕 U+1D795 | 1D3FF |
Η U+0397 | 𝞖 U+1D796 | 1D3FF |
Θ U+0398 | 𝞗 U+1D797 | 1D3FF |
Ι U+0399 | 𝞘 U+1D798 | 1D3FF |
Κ U+039A | 𝞙 U+1D799 | 1D3FF |
Λ U+039B | 𝞚 U+1D79A | 1D3FF |
Μ U+039C | 𝞛 U+1D79B | 1D3FF |
Ν U+039D | 𝞜 U+1D79C | 1D3FF |
Ξ U+039E | 𝞝 U+1D79D | 1D3FF |
Ο U+039F | 𝞞 U+1D79E | 1D3FF |
Π U+03A0 | 𝞟 U+1D79F | 1D3FF |
Ρ U+03A1 | 𝞠 U+1D7A0 | 1D3FF |
ϴ U+03F4 | 𝞡 U+1D7A1 | 1D3AD |
Σ U+03A3 | 𝞢 U+1D7A2 | 1D3FF |
Τ U+03A4 | 𝞣 U+1D7A3 | 1D3FF |
Υ U+03A5 | 𝞤 U+1D7A4 | 1D3FF |
Φ U+03A6 | 𝞥 U+1D7A5 | 1D3FF |
Χ U+03A7 | 𝞦 U+1D7A6 | 1D3FF |
Ψ U+03A8 | 𝞧 U+1D7A7 | 1D3FF |
Ω U+03A9 | 𝞨 U+1D7A8 | 1D3FF |
∇ U+2207 | 𝞩 U+1D7A9 | 1B5A2 |
α U+03B1 | 𝞪 U+1D7AA | 1D3F9 |
β U+03B2 | 𝞫 U+1D7AB | 1D3F9 |
γ U+03B3 | 𝞬 U+1D7AC | 1D3F9 |
δ U+03B4 | 𝞭 U+1D7AD | 1D3F9 |
ε U+03B5 | 𝞮 U+1D7AE | 1D3F9 |
ζ U+03B6 | 𝞯 U+1D7AF | 1D3F9 |
η U+03B7 | 𝞰 U+1D7B0 | 1D3F9 |
θ U+03B8 | 𝞱 U+1D7B1 | 1D3F9 |
ι U+03B9 | 𝞲 U+1D7B2 | 1D3F9 |
κ U+03BA | 𝞳 U+1D7B3 | 1D3F9 |
λ U+03BB | 𝞴 U+1D7B4 | 1D3F9 |
μ U+03BC | 𝞵 U+1D7B5 | 1D3F9 |
ν U+03BD | 𝞶 U+1D7B6 | 1D3F9 |
ξ U+03BE | 𝞷 U+1D7B7 | 1D3F9 |
ο U+03BF | 𝞸 U+1D7B8 | 1D3F9 |
π U+03C0 | 𝞹 U+1D7B9 | 1D3F9 |
ρ U+03C1 | 𝞺 U+1D7BA | 1D3F9 |
ς U+03C2 | 𝞻 U+1D7BB | 1D3F9 |
σ U+03C3 | 𝞼 U+1D7BC | 1D3F9 |
τ U+03C4 | 𝞽 U+1D7BD | 1D3F9 |
υ U+03C5 | 𝞾 U+1D7BE | 1D3F9 |
φ U+03C6 | 𝞿 U+1D7BF | 1D3F9 |
χ U+03C7 | 𝟀 U+1D7C0 | 1D3F9 |
ψ U+03C8 | 𝟁 U+1D7C1 | 1D3F9 |
ω U+03C9 | 𝟂 U+1D7C2 | 1D3F9 |
∂ U+2202 | 𝟃 U+1D7C3 | 1B5C1 |
ϵ U+03F5 | 𝟄 U+1D7C4 | 1D3CF |
ϑ U+03D1 | 𝟅 U+1D7C5 | 1D3F4 |
ϰ U+03F0 | 𝟆 U+1D7C6 | 1D3D6 |
ϕ U+03D5 | 𝟇 U+1D7C7 | 1D3F2 |
ϱ U+03F1 | 𝟈 U+1D7C8 | 1D3D7 |
ϖ U+03D6 | 𝟉 U+1D7C9 | 1D3F3 |
sans-serif-italic
mappingsOriginal | sans-serif-italic | Δcode point |
---|---|---|
A U+0041 | 𝘈 U+1D608 | 1D5C7 |
B U+0042 | 𝘉 U+1D609 | 1D5C7 |
C U+0043 | 𝘊 U+1D60A | 1D5C7 |
D U+0044 | 𝘋 U+1D60B | 1D5C7 |
E U+0045 | 𝘌 U+1D60C | 1D5C7 |
F U+0046 | 𝘍 U+1D60D | 1D5C7 |
G U+0047 | 𝘎 U+1D60E | 1D5C7 |
H U+0048 | 𝘏 U+1D60F | 1D5C7 |
I U+0049 | 𝘐 U+1D610 | 1D5C7 |
J U+004A | 𝘑 U+1D611 | 1D5C7 |
K U+004B | 𝘒 U+1D612 | 1D5C7 |
L U+004C | 𝘓 U+1D613 | 1D5C7 |
M U+004D | 𝘔 U+1D614 | 1D5C7 |
N U+004E | 𝘕 U+1D615 | 1D5C7 |
O U+004F | 𝘖 U+1D616 | 1D5C7 |
P U+0050 | 𝘗 U+1D617 | 1D5C7 |
Q U+0051 | 𝘘 U+1D618 | 1D5C7 |
R U+0052 | 𝘙 U+1D619 | 1D5C7 |
S U+0053 | 𝘚 U+1D61A | 1D5C7 |
T U+0054 | 𝘛 U+1D61B | 1D5C7 |
U U+0055 | 𝘜 U+1D61C | 1D5C7 |
V U+0056 | 𝘝 U+1D61D | 1D5C7 |
W U+0057 | 𝘞 U+1D61E | 1D5C7 |
X U+0058 | 𝘟 U+1D61F | 1D5C7 |
Y U+0059 | 𝘠 U+1D620 | 1D5C7 |
Z U+005A | 𝘡 U+1D621 | 1D5C7 |
a U+0061 | 𝘢 U+1D622 | 1D5C1 |
b U+0062 | 𝘣 U+1D623 | 1D5C1 |
c U+0063 | 𝘤 U+1D624 | 1D5C1 |
d U+0064 | 𝘥 U+1D625 | 1D5C1 |
e U+0065 | 𝘦 U+1D626 | 1D5C1 |
f U+0066 | 𝘧 U+1D627 | 1D5C1 |
g U+0067 | 𝘨 U+1D628 | 1D5C1 |
h U+0068 | 𝘩 U+1D629 | 1D5C1 |
i U+0069 | 𝘪 U+1D62A | 1D5C1 |
j U+006A | 𝘫 U+1D62B | 1D5C1 |
k U+006B | 𝘬 U+1D62C | 1D5C1 |
l U+006C | 𝘭 U+1D62D | 1D5C1 |
m U+006D | 𝘮 U+1D62E | 1D5C1 |
n U+006E | 𝘯 U+1D62F | 1D5C1 |
o U+006F | 𝘰 U+1D630 | 1D5C1 |
p U+0070 | 𝘱 U+1D631 | 1D5C1 |
q U+0071 | 𝘲 U+1D632 | 1D5C1 |
r U+0072 | 𝘳 U+1D633 | 1D5C1 |
s U+0073 | 𝘴 U+1D634 | 1D5C1 |
t U+0074 | 𝘵 U+1D635 | 1D5C1 |
u U+0075 | 𝘶 U+1D636 | 1D5C1 |
v U+0076 | 𝘷 U+1D637 | 1D5C1 |
w U+0077 | 𝘸 U+1D638 | 1D5C1 |
x U+0078 | 𝘹 U+1D639 | 1D5C1 |
y U+0079 | 𝘺 U+1D63A | 1D5C1 |
z U+007A | 𝘻 U+1D63B | 1D5C1 |
bold-sans-serif
mappingsOriginal | bold-sans-serif | Δcode point |
---|---|---|
A U+0041 | 𝗔 U+1D5D4 | 1D593 |
B U+0042 | 𝗕 U+1D5D5 | 1D593 |
C U+0043 | 𝗖 U+1D5D6 | 1D593 |
D U+0044 | 𝗗 U+1D5D7 | 1D593 |
E U+0045 | 𝗘 U+1D5D8 | 1D593 |
F U+0046 | 𝗙 U+1D5D9 | 1D593 |
G U+0047 | 𝗚 U+1D5DA | 1D593 |
H U+0048 | 𝗛 U+1D5DB | 1D593 |
I U+0049 | 𝗜 U+1D5DC | 1D593 |
J U+004A | 𝗝 U+1D5DD | 1D593 |
K U+004B | 𝗞 U+1D5DE | 1D593 |
L U+004C | 𝗟 U+1D5DF | 1D593 |
M U+004D | 𝗠 U+1D5E0 | 1D593 |
N U+004E | 𝗡 U+1D5E1 | 1D593 |
O U+004F | 𝗢 U+1D5E2 | 1D593 |
P U+0050 | 𝗣 U+1D5E3 | 1D593 |
Q U+0051 | 𝗤 U+1D5E4 | 1D593 |
R U+0052 | 𝗥 U+1D5E5 | 1D593 |
S U+0053 | 𝗦 U+1D5E6 | 1D593 |
T U+0054 | 𝗧 U+1D5E7 | 1D593 |
U U+0055 | 𝗨 U+1D5E8 | 1D593 |
V U+0056 | 𝗩 U+1D5E9 | 1D593 |
W U+0057 | 𝗪 U+1D5EA | 1D593 |
X U+0058 | 𝗫 U+1D5EB | 1D593 |
Y U+0059 | 𝗬 U+1D5EC | 1D593 |
Z U+005A | 𝗭 U+1D5ED | 1D593 |
a U+0061 | 𝗮 U+1D5EE | 1D58D |
b U+0062 | 𝗯 U+1D5EF | 1D58D |
c U+0063 | 𝗰 U+1D5F0 | 1D58D |
d U+0064 | 𝗱 U+1D5F1 | 1D58D |
e U+0065 | 𝗲 U+1D5F2 | 1D58D |
f U+0066 | 𝗳 U+1D5F3 | 1D58D |
g U+0067 | 𝗴 U+1D5F4 | 1D58D |
h U+0068 | 𝗵 U+1D5F5 | 1D58D |
i U+0069 | 𝗶 U+1D5F6 | 1D58D |
j U+006A | 𝗷 U+1D5F7 | 1D58D |
k U+006B | 𝗸 U+1D5F8 | 1D58D |
l U+006C | 𝗹 U+1D5F9 | 1D58D |
m U+006D | 𝗺 U+1D5FA | 1D58D |
n U+006E | 𝗻 U+1D5FB | 1D58D |
o U+006F | 𝗼 U+1D5FC | 1D58D |
p U+0070 | 𝗽 U+1D5FD | 1D58D |
q U+0071 | 𝗾 U+1D5FE | 1D58D |
r U+0072 | 𝗿 U+1D5FF | 1D58D |
s U+0073 | 𝘀 U+1D600 | 1D58D |
t U+0074 | 𝘁 U+1D601 | 1D58D |
u U+0075 | 𝘂 U+1D602 | 1D58D |
v U+0076 | 𝘃 U+1D603 | 1D58D |
w U+0077 | 𝘄 U+1D604 | 1D58D |
x U+0078 | 𝘅 U+1D605 | 1D58D |
y U+0079 | 𝘆 U+1D606 | 1D58D |
z U+007A | 𝘇 U+1D607 | 1D58D |
Α U+0391 | 𝝖 U+1D756 | 1D3C5 |
Β U+0392 | 𝝗 U+1D757 | 1D3C5 |
Γ U+0393 | 𝝘 U+1D758 | 1D3C5 |
Δ U+0394 | 𝝙 U+1D759 | 1D3C5 |
Ε U+0395 | 𝝚 U+1D75A | 1D3C5 |
Ζ U+0396 | 𝝛 U+1D75B | 1D3C5 |
Η U+0397 | 𝝜 U+1D75C | 1D3C5 |
Θ U+0398 | 𝝝 U+1D75D | 1D3C5 |
Ι U+0399 | 𝝞 U+1D75E | 1D3C5 |
Κ U+039A | 𝝟 U+1D75F | 1D3C5 |
Λ U+039B | 𝝠 U+1D760 | 1D3C5 |
Μ U+039C | 𝝡 U+1D761 | 1D3C5 |
Ν U+039D | 𝝢 U+1D762 | 1D3C5 |
Ξ U+039E | 𝝣 U+1D763 | 1D3C5 |
Ο U+039F | 𝝤 U+1D764 | 1D3C5 |
Π U+03A0 | 𝝥 U+1D765 | 1D3C5 |
Ρ U+03A1 | 𝝦 U+1D766 | 1D3C5 |
ϴ U+03F4 | 𝝧 U+1D767 | 1D373 |
Σ U+03A3 | 𝝨 U+1D768 | 1D3C5 |
Τ U+03A4 | 𝝩 U+1D769 | 1D3C5 |
Υ U+03A5 | 𝝪 U+1D76A | 1D3C5 |
Φ U+03A6 | 𝝫 U+1D76B | 1D3C5 |
Χ U+03A7 | 𝝬 U+1D76C | 1D3C5 |
Ψ U+03A8 | 𝝭 U+1D76D | 1D3C5 |
Ω U+03A9 | 𝝮 U+1D76E | 1D3C5 |
∇ U+2207 | 𝝯 U+1D76F | 1B568 |
α U+03B1 | 𝝰 U+1D770 | 1D3BF |
β U+03B2 | 𝝱 U+1D771 | 1D3BF |
γ U+03B3 | 𝝲 U+1D772 | 1D3BF |
δ U+03B4 | 𝝳 U+1D773 | 1D3BF |
ε U+03B5 | 𝝴 U+1D774 | 1D3BF |
ζ U+03B6 | 𝝵 U+1D775 | 1D3BF |
η U+03B7 | 𝝶 U+1D776 | 1D3BF |
θ U+03B8 | 𝝷 U+1D777 | 1D3BF |
ι U+03B9 | 𝝸 U+1D778 | 1D3BF |
κ U+03BA | 𝝹 U+1D779 | 1D3BF |
λ U+03BB | 𝝺 U+1D77A | 1D3BF |
μ U+03BC | 𝝻 U+1D77B | 1D3BF |
ν U+03BD | 𝝼 U+1D77C | 1D3BF |
ξ U+03BE | 𝝽 U+1D77D | 1D3BF |
ο U+03BF | 𝝾 U+1D77E | 1D3BF |
π U+03C0 | 𝝿 U+1D77F | 1D3BF |
ρ U+03C1 | 𝞀 U+1D780 | 1D3BF |
ς U+03C2 | 𝞁 U+1D781 | 1D3BF |
σ U+03C3 | 𝞂 U+1D782 | 1D3BF |
τ U+03C4 | 𝞃 U+1D783 | 1D3BF |
υ U+03C5 | 𝞄 U+1D784 | 1D3BF |
φ U+03C6 | 𝞅 U+1D785 | 1D3BF |
χ U+03C7 | 𝞆 U+1D786 | 1D3BF |
ψ U+03C8 | 𝞇 U+1D787 | 1D3BF |
ω U+03C9 | 𝞈 U+1D788 | 1D3BF |
∂ U+2202 | 𝞉 U+1D789 | 1B587 |
ϵ U+03F5 | 𝞊 U+1D78A | 1D395 |
ϑ U+03D1 | 𝞋 U+1D78B | 1D3BA |
ϰ U+03F0 | 𝞌 U+1D78C | 1D39C |
ϕ U+03D5 | 𝞍 U+1D78D | 1D3B8 |
ϱ U+03F1 | 𝞎 U+1D78E | 1D39D |
ϖ U+03D6 | 𝞏 U+1D78F | 1D3B9 |
0 U+0030 | 𝟬 U+1D7EC | 1D7BC |
1 U+0031 | 𝟭 U+1D7ED | 1D7BC |
2 U+0032 | 𝟮 U+1D7EE | 1D7BC |
3 U+0033 | 𝟯 U+1D7EF | 1D7BC |
4 U+0034 | 𝟰 U+1D7F0 | 1D7BC |
5 U+0035 | 𝟱 U+1D7F1 | 1D7BC |
6 U+0036 | 𝟲 U+1D7F2 | 1D7BC |
7 U+0037 | 𝟳 U+1D7F3 | 1D7BC |
8 U+0038 | 𝟴 U+1D7F4 | 1D7BC |
9 U+0039 | 𝟵 U+1D7F5 | 1D7BC |
This section is non-normative.
MathML Core is based on MathML3. See the appendix E of [MathML3] for the people that contributed to that specification.
We would like to thank the people who, through their input and feedback on public communication channels have helped us with the creation of this specification: André Greiner-Petter, Anne van Kesteren, Boris Zbarsky, Brian Smith, Daniel Marques, David Carlisle, Deyan Ginev, Elika Etemad, Emilio Cobos Álvarez, ExE Boss, Ian Kilpatrick, Koji Ishii, L. David Baron, Michael Kohlhase, Michael Smith, Moritz Schubotz, Murray Sargent, Ryosuke Niwa, Sergey Malkin, Tab Atkins Jr., Viktor Yaffle and frankvel.
In addition, we would like to extend special thanks to Brian Kardell, Neil Soiffer and Rob Buis for help with the editing.
Many thanks also to the following people for their help with the test suite: Brian Kardell, Frédéric Wang, Neil Soiffer and Rob Buis. Several tests are also based on MathML tests from browser repositories and we are grateful to the Mozilla and WebKit contributors.
Community Group members who have regularly participated to MathML Core meetings during the development of this specification: Brian Kardell, Bruce Miller, David Carlisle, Murray Sargent, Frédéric Wang, Neil Soiffer (Chair), Patrick Ion, Rob Buis, David Farmer, Steve Noble, Daniel Marques, Sam Dooley.
This section is non-normative.
As explained in § 2.2.1 HTML and SVG,
MathML can be embedded into an SVG image via the
<foreignObject>
element which can thus be used in a
<canvas>
element.
UA may decide to implement any measure to prevent potential
information leakage
such as tainting the canvas and returning a
"SecurityError"
DOMException
when one tries to access the canvas' content via JavaScript APIs.
This specification only adds script execution mechanisms in the the MathML event handler attributes described in § 2.1.3 Global Attributes. UAs may decide to apply the same security restrictions as HTML and SVG to prevent execution of scripts in these attributes.
This specification describes layout of a DOM
elements which may involve system
fonts. Like for HTML/CSS layout,
it is thus possible to use JavaScript APIs
to measure box sizes and positions and infer data from system fonts
(e.g. default fonts, available glyphs, font layout
parameters...). The only font informations that are not exposed by other
existing Web APIs are the math layout data described in
§ 5. OpenType MATH
table.
<maction>
element with
the actiontype
value set to "statusline"
in order to override the text of the browser statusline. In particular,
this could be used to hide the URL text of an untrusted link.
This has been removed in MathML Core
and the <maction>
element essentially behaves
like an <mrow>
container with extra style.
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.
The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHALL, SHALL NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this specification.
All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and notes. [RFC2119].
Examples in this specification are introduced with the words
“for example” or are set apart from the normative text with
class="example"
, like this:
This is an example of an informative example.
Informative notes begin with the word “Note” and are set apart from
the normative text with class="note"
, like this:
Note, this is an informative note.
Advisements are normative sections styled to evoke special attention
and are set apart from other normative text with
<strong class="advisement">
, like this:
UAs MUST provide an accessible alternative.
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in: